Acta Photonica Sinica, Volume. 51, Issue 3, 0310001(2022)
Cancer Pathological Segmentation Network Based on Depth Feature Fusion
[2] N COUDRAY, P S OCAMPO, T SAKELLAROPOULOS et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine, 10, 1559-1567(2018).
[4] Xu JIN, Ke WEN, Guofeng LV et al. Survey on the applications of deep learning to histopathology. Journal of Image and Graphics, 25, 1982-1993(2020).
[5] N OTSU. A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man & Cybernetics, 9, 62-66(2007).
[9] Weixing WANG, Liping TIAN, Yue WANG. Segmentation of cell images based on improved graph MST and skeleton distance mapping. Optics and Precision Engineering, 21, 2464-2472(2013).
[13] D C CIRESAN, A GIUSTI, L M GAMBARDELLA et al. Deep neural networks segment neuronal membranes in electron microscopy images, 2, 2843-2851(2012).
[14] Hong HUANG, Rongfei LV, Junli TAO et al. Segmentation of lung nodules in CT images using improved U-Net++. Acta Photonica Sinica, 50, 0210001(2021).
[16] Shaojia ZHENG, Qingli LI, Mei ZHOU et al. Fourier transform channel attention network for cholangiocarcinoma hyperspectral image segmentation. Journal of Image and Graphics, 26, 1836-1846(2021).
[18] Jie SONG, Liang XIAO, Zhichao LIAN et al. Overview and prospect of deep learning for image segmentation in digital pathology. Journal of Software, 32, 1427-1460(2021).
[19] M X TAN, Q V LE. EfficientNet: rethinking model scaling for convolutional neural networks, 691-700(2019).
Get Citation
Copy Citation Text
Hong HUANG, Tao WANG, Yuan LI, Fanlin ZHOU, Yu LI. Cancer Pathological Segmentation Network Based on Depth Feature Fusion[J]. Acta Photonica Sinica, 2022, 51(3): 0310001
Category: Image Processing
Received: Jul. 21, 2021
Accepted: Oct. 19, 2021
Published Online: Apr. 8, 2022
The Author Email: HUANG Hong (hhuang@cqu.edu.cn)