Acta Photonica Sinica, Volume. 51, Issue 3, 0310001(2022)

Cancer Pathological Segmentation Network Based on Depth Feature Fusion

Hong HUANG1,*... Tao WANG1, Yuan LI1, Fanlin ZHOU2 and Yu LI2 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technique System of the Ministry of Education,Chongqing University,Chongqing 400044,China
  • 2Department of Pathology,Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital,Chongqing 400030,China
  • show less
    Figures & Tables(11)
    The overall structure of the proposed HU-Net algorithm
    The structure of EfficientNet-B4
    The method of using attention block
    The structure of attention block
    The SEED and BOT data sets used in the experiment
    Segmentation masks of different algorithms on BOT dataset
    Segmentation masks of different algorithms on SEED dataset
    • Table 1. The result of different algorithms on the BOT dataset

      View table
      View in Article

      Table 1. The result of different algorithms on the BOT dataset

      AlgorithmDICE /%MA/%Sen/%Pre/%IOU/%
      U-Net70.0686.0468.5777.9358.74
      FCN-VGG1668.0185.0566.7273.6756.91
      SegNet72.0585.8670.8175.5660.30
      DeepLabv3+76.5287.8775.9878.8165.34
      TransUnet75.0287.4978.4075.1465.09
      CA-Net74.3383.4777.5372.1262.00
      HU-Net77.9988.5279.2278.7867.01
    • Table 2. The results of different models on the BOT dataset

      View table
      View in Article

      Table 2. The results of different models on the BOT dataset

      AlgorithmDICE/%MA/%Sen/%Pre/%IOU/%
      EU-Net75.2687.0077.5974.5963.73
      FU-Net77.4588.5277.4678.7866.53
      AU-Net76.9887.6476.7878.3665.56
      HU-Net77.9988.6579.2278.9567.01
    • Table 3. The result of different algorithms on the SEED dataset

      View table
      View in Article

      Table 3. The result of different algorithms on the SEED dataset

      AlgorithmDice/%MA/%Sen/%Pre/%IOU/%
      U-Net66.3678.9065.6170.1553.65
      FCN-VGG1671.4775.3778.5271.3656.87
      SegNet75.0180.2378.8273.7561.55
      DeepLabv3+81.8686.2482.5980.6669.63
      TransUnet80.2585.1682.9579.7968.94
      CA-Net76.7481.1380.6874.3563.70
      HU-Net82.9487.4284.0182.5672.08
    • Table 4. The results of different models on the SEED dataset

      View table
      View in Article

      Table 4. The results of different models on the SEED dataset

      AlgorithmDice/%MA/%Sen/%Pre/%IOU/%
      EU-Net78.9583.4280.8577.5666.10
      AU-Net79.7685.0280.2679.8767.74
      FU-Net81.7686.8482.2381.9270.48
      HU-Net82.9487.4284.082.5672.08
    Tools

    Get Citation

    Copy Citation Text

    Hong HUANG, Tao WANG, Yuan LI, Fanlin ZHOU, Yu LI. Cancer Pathological Segmentation Network Based on Depth Feature Fusion[J]. Acta Photonica Sinica, 2022, 51(3): 0310001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 21, 2021

    Accepted: Oct. 19, 2021

    Published Online: Apr. 8, 2022

    The Author Email: HUANG Hong (hhuang@cqu.edu.cn)

    DOI:10.3788/gzxb20225103.0310001

    Topics