Optoelectronics Letters, Volume. 20, Issue 2, 89(2024)

InGaN multiple quantum well based light-emitting diodes with indium composition gradient InGaN quantum barriers

Xien SANG1... Yuan XU1, Mengshuang YIN1, Fang WANG1,2,3,4,*, J LIOU Juin5, and Yuhuai LIU1,2,34 |Show fewer author(s)
Author Affiliations
  • 1National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
  • 2Institute of Intelligence Sensing, Zhengzhou University, Zhengzhou 450001, China
  • 3Research Institute of Industrial Technology Co., Ltd., Zhengzhou University, Zhengzhou 450001, China
  • 4Zhengzhou Way Do Electronics Co., Ltd., Zhengzhou 450001, China
  • 5School of Electrical and Information Engineering, North Minzu University, Yinchuan 750001, China
  • show less
    References(26)

    [1] [1] KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies Han[J]. Nature photonics, 2019, 13(4): 233-244.

    [2] [2] HINDS L M, O’DONNEL C P, AKHTE M, et al. Princi-ples and mechanisms of ultraviolet light emitting diode technology for food industry applications[J]. Innova-tive food science & emerging technologies, 2019, 56: 102153.

    [3] [3] MURAMOTO Y, KIMUR M, NOUDA S. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp[J]. Semiconductor science and technology, 2014, 29(8): 084004.

    [4] [4] SONG K, MPHSENI M, TAGHIPOU F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review[J]. Water research, 2016, 94: 341-349.

    [5] [5] YU H B, REN Z J, MEMON M H, et al. Cascaded deep ultraviolet light-emitting diode via tunnel junction[J]. Chinese optics letters, 2021, 19(8): 082503.

    [6] [6] NAKAMURA S. Future technologies and applications of III-nitride materials and devices[J]. Engineering, 2015, 1(2): 161.

    [7] [7] ZHENG H, SUN H, YANG M, et al. Effect of polariza-tion field and nonradiative recombination lifetime on the performance improvement of step stage InGaN/GaN multiple quantum well LEDs[J]. Journal of display tech-nology, 2015, 11(9): 776-782.

    [8] [8] KUO Y K, CHANG J Y, TSAI M C, et al. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific de-signs for the electron blocking layer[J]. Optics letters, 2010, 35(19): 3285-3287.

    [9] [9] XU J R, SCHUBERT M F, NOENAUN A N, et al. Re-duction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting di-odes[J]. Applied physics letters, 2009, 94(1): 011113.

    [10] [10] YEN S H, TSAI M C, TSAI M L, et al. Effect of n-type Algan layer on carrier transportation and efficiency drop of blue InGaN light-emitting diodes[J]. IEEE photonics technology letters, 2009, 21(14): 975-977.

    [11] [11] KUO Y K, CHANG J Y, TSAI M C, et al. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers[J]. Applied physics letters, 2009, 95: 1011116.

    [12] [12] KUO Y K, WANG T H, CHANG J Y, et al. Advantages of InGaN light-emitting diodes with GaN-InGaN-GaN barriers[J]. Applied physics letters, 2011, 99(9): 091107.

    [13] [13] XIONG J Y, XU Y Q, DING B B, et al. Investigation of blue InGaN light-emitting diodes with p-AlGaN/InGaN superlattice interlayer[J]. Applied physics A-materials science and processing, 2014, 114(8): 309-313.

    [14] [14] KARAN H, BISWAS A. Improving performance of light-emitting diodes using InGaN/GaN MQWs with varying trapezoidal bottom well width[J]. Optik, 2021, 247: 167888.

    [15] [15] HENGSTETER J, PRAJOON P, NIRMAL D. Analysis of high efficiency InGaN multiple quantum-well light-emitting-diodes using InGaN step-graded barri-ers[J]. Journal of nanoelectronics and optoelectronics, 2018, 13(6): 939-943.

    [16] [16] JIA C Y, YU T J, FENG X H, et al. Performance im-provement of GaN-based near-UV LEDs with In-GaN/AlGaN superlattices strain relief layer and AlGaN barrier[J]. Superlattices and microstructures, 2016, 97: 417-423.

    [17] [17] WOLNY P, TURSKI H, MUZIOL G, et al. Impact of interfaces on photoluminescence efficiency of high-indium-content (In, Ga)N quantum wells[J]. Physi-cal review applied, 2023, 19(1): 014044.

    [18] [18] SHARIF M N, WALI Q, REHMAN H U, et al. Sensitiv-ity of indium molar fraction in InGaN quantum wells for near-UV light-emitting diodes[J]. Micro and nanostruc-tures, 2022, 165: 207208.

    [19] [19] JIANG Y R, CHENG L W, LIN X Y, et al. Composi-tion-graded quantum barriers improve performance in InGaN-based laser diodes[J]. Semiconductor science and technology, 2021, 36(11): 115001.

    [20] [20] FANG G T, ZHANG M, XIONG D Y. On the near-pole hole insertion layer and the far-pole hole insertion layer for multi-quantum-well deep ultraviolet light-emitting diodes[J]. Nanomaterials, 2022, 12(4): 629.

    [21] [21] MAEDA N, JO M, HIRAYAMA H. Improving the light-extraction efficiency of AlGaN DUV-LEDs by us-ing a superlattice hole spreading layer and an Al reflec-tor[J]. Physica status solidi A-applications and materials science, 2018, 215: 1700436.

    [22] [22] SHARIF M N, USMAN M, NIASS M I, et al. Composi-tionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer[J]. Nanotechnology, 2021, 33(7): 075205.

    [23] [23] NIASS M I, SHARIF M N, WANG Y F, et al. Enhance ment of the optoelectronic characteristics of deep ultra-violet nanowire laser diodes by induction of bulk polari-zation charge with graded AlN composition in AlxGa1-xN waveguide[J]. Superlattices and microstruc-tures, 2020, 145: 106643.

    [24] [24] TURIN V O. A modified transferred-electron high-field mobility model for GaN devices simulation[J]. Solid state electronics, 2005, 49(10): 1678-1682.

    [25] [25] LIU J P, RYOU J H, DUPUIS R D, et al. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes[J]. Applied physics letters, 2008, 93(2): 021102.

    [26] [26] BERCHA A, TRZECIAKOWSK W, MUZIO G, et al. Evidence for "dark charge" from photoluminescence measurements in wide InGaN quantum wells[J]. Optics express, 2023, 31(2): 3227-3236.

    Tools

    Get Citation

    Copy Citation Text

    SANG Xien, XU Yuan, YIN Mengshuang, WANG Fang, LIOU Juin J, LIU Yuhuai. InGaN multiple quantum well based light-emitting diodes with indium composition gradient InGaN quantum barriers[J]. Optoelectronics Letters, 2024, 20(2): 89

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 6, 2023

    Accepted: Aug. 16, 2023

    Published Online: Jul. 24, 2024

    The Author Email: Fang WANG (iefwang@zzu.edu.cn)

    DOI:10.1007/s11801-024-3099-0

    Topics