Study On Optical Communications, Volume. 49, Issue 1, 1(2023)

Silicon Photonic 2.5D/3D Integration Technology and Its Applications

Xiang-peng OU... Zai-li YANG, Bo TANG, Zhi-hua LI, Jun LUO, Wen-wu WANG and Yan YANG* |Show fewer author(s)
Author Affiliations
  • Integrated Circuit Advanced Process R&D Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
  • show less
    References(113)

    [2] Andrae A S G, Edler T. On Global Electricity Usage of Communication Technology: Trends to 2030[J]. Challenges, 6, 117-157(2015).

    [3] Young I A, Mohammed E, Liao J T S et al. Optical I/O Technology for Tera-scale Computing[J]. IEEE Journal of Solid-state Circuits, 45, 235-248(2010).

    [4] Wang X J, Su Z T, Zhou Z P. Silicon-based Optoelectronics: Progress towards Large Scale Optoelectronic Integration and Applications[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 15, 1-31(2022).

    [5] Kimerling L C, Ahn D, Apsel A B et al. Electronic-photonic Integrated Circuits on the CMOS Platform[C], 20060125-20060126(2006).

    [6] Nagarajan R, Joyner C H, Schneider R P et al. Large-scale Photonic Integrated Circuits[J]. IEEE Journal of Selected Topics in Quantum Electron, 11, 50-65(2005).

    [7] Koch T L, Koren U. Semiconductor Photonic Integrated Circuits[J]. IEEE J Quantum Electron, 27, 641-653(1991).

    [8] Yang Y, Fang Q, Yu M et al. High-efficiency Si Optical Modulator Using Cu Travelling-wave Electrode[J]. Optics Express, 22, 29978-29985(2014).

    [9] Liang D, Bowers J E. Recent Progress in Lasers on Silicon[J]. Nature Photonics, 4, 511-517(2010).

    [10] Liang D, Bowers J E. Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration[J]. Light: Advanced Manufacturing, 2, 59-83(2021).

    [11] Xiang C, Jin W, Huang D et al. High-Performance Silicon Photonics Using Heterogeneous Integration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-15(2022).

    [12] Zhou Z, Yin B, Michel J. On-chip Light Sources for Silicon Photonics[J]. Light: Science & Applications, 4, e358(2015).

    [13] Baets R, Subramanian A Z, Clemmen S et al. Silicon Photonics: Silicon Nitride Versus Silicon-on-insulator[C], Th3J.1(2016).

    [14] Roeloffzen C G H, Hoekman M, Klein E J et al. Low-Loss Si3N4 TriPleX Optical Waveguides: Technology and Applications Overview[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-21(2018).

    [15] Morichetti F, Melloni A, Martinelli M et al. Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?[J]. Journal of Lightwave Technology, 25, 2579-2589(2007).

    [16] Han C, Jin M, Tao Y et al. Ultra-compact Silicon Modulator with 110 GHz Bandwidth[C], Th4C.5(2022).

    [17] Lischke S, Peczek A, Morgan J S et al. Ultra-fast Germanium Photodiode with 3-dB Bandwidth of 265 GHz[J]. Nature Photonics, 15, 925-931(2021).

    [18] Fang A W, Park H, Cohen O et al. Electrically Pumped Hybrid AlGaInAs-silicon Evanescent Laser[J]. Optics Express, 14, 9203-9210(2006).

    [19] Jones R, Doussiere P, Driscoll J B et al. Heterogeneously Integrated InP\‘Silicon Photonics: Fabricating Fully Functional Transceivers[J]. IEEE Nanotechnology Magazine, 13, 17-26(2019).

    [20] Chang F, Sun Y, Lingle R et al. First Demonstration of PAM4 Transmissions for Record Reach and High-capacity SWDM Links over MMF Using 40G/100G PAM4 IC Chipset with Real-time DSP[C], Tu2B.2(2017).

    [22] Margalit N, Xiang C, Bowers S M et al. Perspective on the Future of Silicon Photonics and Electronics[J]. Applied Physics Letters, 118, 220501(2021).

    [23] Won R, Paniccia M. Integrating Silicon Photonics[J]. Nature Photonics, 4, 498-499(2010).

    [24] Hsu C P, Li B, Solano-Rivas B et al. A Review and Perspective on Optical Phased Array for Automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-16(2021).

    [25] Xie W, Komljenovic T, Huang J et al. Heterogeneous Silicon Photonics Sensing for Autonomous Cars[J]. Optics Express, 27, 3642-3663(2019).

    [26] Tombez L, Zhang E J, Orcutt J S et al. Methane Absorption Spectroscopy on a Silicon Photonic Chip[J]. Optics, 4, 1322-1325(2017).

    [27] Zhou H L, Dong J J, Cheng J W et al. Photonic Matrix Multiplication Lights up Photonic Accelerator and beyond[J]. Light: Advanced Manufacturing, 11, 158-178(2022).

    [28] Hughes T W, Minkov M, Shi Y et al. Training of Photonic Neural Networks Through in Situ Backpropagation and Gradient Measurement[J]. Optica, 5, 864(2018).

    [29] Xiao X, On M B, Van Vaerenbergh T et al. Large-scale and Energy-efficient Tensorized Optical Neural Networks on III-V-on-silicon MOSCAP Platform[J]. APL Photonics, 6, 126107(2021).

    [30] Chen Z G, Segev M. Highlighting Photonics: Looking into the Next Decade[J]. eLight, 1, 2(2021).

    [31] Helkey R, Saleh A A M, Buckwalter J et al. High-Performance Photonic Integrated Circuits on Silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-15(2019).

    [32] Norman J C, Jung D, Wan Y et al. Perspective: The Future of Quantum Dot Photonic Integrated Circuits[J]. Apl Photonics, 3, 030901(2018).

    [33] Shang C, Wan Y, Selvidge J et al. Perspectives on Advances in Quantum Dot Lasers and Integration with Si Photonic Integrated Circuits[J]. ACS Photonics, 8, 2555-2566(2021).

    [34] Thomson D, Zilkie A, Bowers J E et al. Roadmap on Silicon Photonics[J]. Journal of Optics, 18, 073003(2016).

    [35] Atabaki A H, Moazeni S, Pavanello F et al. Integrating Photonics with Silicon Nanoelectronics for the Next Generation of Systems on a Chip[J]. Nature, 556, 349-354(2018).

    [37] Yang Y, Yu M B, Fang Q et al. 3D Silicon Photonics Packaging based on TSV Interposer for High Density On-board Optics Module[C], 483-489(2016).

    [38] Kim D W, Au K Y, Luo H Y L X et al. 2.5 D Silicon Optical Interposer for 400 Gbps Electronic-photonic Integrated Circuit Platform Packaging[C], 1-4(2017).

    [39] Yu M B, Yang Y, Fang Q et al. 3D Electro-optical Integration based on High-performance Si Photonics TSV Interposer[C], 1-3(2016).

    [40] Urino Y, Shimizu T, Okano M et al. First Demonstration of High Density Optical Interconnects Integrated with Lasers, Optical Modulators, and Photodetectors on Single Silicon Substrate[J]. Optics Express, 19, B159-B165(2011).

    [41] Williams K A. Prospects for Electronic Photonic Integration[C], IW3A.1(2017).

    [42] Abrams N C, Cheng Q, Glick M et al. Silicon Photonic 2. 5 D Multi-chip Module Transceiver for High-performance Data Centers[J]. Journal of Lightwave Technology, 38, 3346-3357(2020).

    [43] Liu A, Liao L, Chetrit Y et al. Wavelength Division Multiplexing based Photonic Integrated Circuits on Silicon-on-insulator Platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 23-32(2009).

    [44] Li H, Xuan Z, Titriku A et al. A 25 Gb/s, 4. 4 V-swing, AC-coupled Ring Modulator-based WDM Transmitter with Wavelength Stabilization in 65 nm CMOS[J]. IEEE Journal of Solid-state Circuits, 50, 3145-3159(2015).

    [45] Li H, Balamurugan G, Sakib M et al. A 112 Gb/s PAM4 Transmitter with Silicon Photonics Microring Modulator and CMOS Driver[C], Th4A.4(2019).

    [46] Sun J, Kumar R, Sakib M et al. A 128 Gb/s PAM4 Silicon Microring Modulator with Integrated Thermo-Optic Resonance Tuning[J]. Journal of Lightwave Technology, 37, 110-115(2019).

    [47] Li H, Balamurugan G, Sakib M et al. A 112 Gb/s PAM4 Silicon Photonics Transmitter with Microring Modulator and CMOS Driver[J]. Journal of Lightwave Technology, 38, 131-138(2020).

    [48] Ahmed A H, Sharkia A, Casper B et al. Silicon-photonics Microring Links for Datacenters-challenges and Opportunities[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 94-203(2016).

    [49] Sakib M, Kumar R, Ma C et al. A 240 Gb/s PAM4 Silicon Micro-ring Optical Modulator[C], 01-03(2022).

    [50] Zhou Z P, Yang F H, Chen R X et al. Silicon Photonics-a Converging Point of Microelectronics and Optoelectronics[J]. Micro/nano Electronics and Intelligent Manufacturing, 12(2019).

    [52] Novack A, Streshinsky M, Huynh T et al. A Silicon Photonic Transceiver and Hybrid Tunable Laser for 64 Gbaud Coherent Communication[C], Th4D.4(2018).

    [53] Chou B C, Sato Y, Sukumaran V et al. Modeling, Design, and Fabrication of Ultra-high Bandwidth 3D Glass Photonics (3DGP) in Glass Interposers[C], 286-291(2013).

    [54] Thor L S, Yu L H, Chinq J M et al. Silicon Optical Interposer for EPIC 2. 5D Integration[C], T3G.1(2020).

    [55] Abrams N C, Cheng Q, Glick M et al. Silicon Photonic 2. 5D Integrated Multi-Chip Module Receiver[C], 1-2(2020).

    [56] Johnson J E, Bacher K, Schaevitz R et al. Performance and Reliability of Advanced CW Lasers for Silicon Photonics Applications[C], 1-27(2022).

    [57] Snyder B, Mangal N, Lepage G et al. Packaging and Assembly Challenges for 50 G Silicon Photonics Interposers[C], 1-3(2018).

    [58] Yang Y, Yu M, Rusli et al. Through-Si-via (TSV) Keep-Out-Zone (KOZ) in SOI Photonics Interposer: A Study of the Impact of TSV-Induced Stress on Si Ring Resonators[J]. IEEE Photonics Journal, 5, 2700611(2013).

    [59] Denoyer G, Chen A, Park B et al. Hybrid Silicon Photonic Circuits and Transceiver for 56 Gb/s NRZ 2. 2 km Transmission over Single Mode Fiber[C], 1-3(2014).

    [60] Aoki T, Sekiguchi S, Simoyama T et al. Low-crosstalk Simultaneous 16-channel×25 Gb/s Operation of High-density Silicon Photonics Optical Transceiver[J]. Journal of Lightwave Technology, 36, 1262-1267(2018).

    [61] Daudlin S, Rizzo A, Abrams N C et al. 3D-integrated Multichip Module Transceiver for Terabit-scale Dwdm Interconnects[C], Th4A.4(2021).

    [62] Rizzo A, Dai L Y, Meng X et al. Ultra-low Power Consumption Silicon Photonic Link Design Analysis in the AIM PDK[C], 31-36(2019).

    [63] Malik A, Liu S, Timurdogan E et al. Low Power Consumption Silicon Photonics Datacenter Interconnects Enabled by a Parallel Architecture[C], W6A.3(2021).

    [64] Dumont M, Liu S, Kennedy M et al. High-efficiency Quantum Dot Lasers as Comb Sources for DWDM Applications[J]. Applied Sciences, 12, 1836(2022).

    [65] Yang Y. Development of 3D Electro-optical Integration based on Silicon Photonic TSV Interposer[D](2016).

    [66] Yang Y, Rusli, Yu M. RF Modeling of the 3D Electro-Photonic Integration based on SOI Photonic TSV Interposer[C], 1-2(2019).

    [67] Kim D W, Yu L H, Chang K F et al. 3D System-on-Packaging Using Through Silicon Via on SOI for High-Speed Optcal Interconnections with Silicon Photonics Devices for Application of 400 Gbps and Beyond[C], 834-840(2018).

    [68] Miyaguchi K, Ban Y, Pantano N et al. 110 GHz Through-Silicon Via’s Integrated in Silicon Photonics Interposers for Next-Generation Optical Modules[C], 1-4(2021).

    [69] Orcutt J S, Gill D M, Proesel J et al. Monolithic Silicon Photonics at 25 Gb/s[C], 1-3(2016).

    [70] Stojanovic V, Ram R J, Popovic M et al. Monolithic Silicon-photonic Platforms in State-of-the-art CMOS SOI processes[J]. Optics Express, 26, 13106-13121(2018).

    [71] Gill D M, Xiong C, Proesel J E et al. Demonstration of Error Free Operation up to 32 Gbit/s From a CMOS Integrated Monolithic Nano-Photonic Transmitter[C], STu4F.3(2015).

    [72] Gunn C. CMOS Photonics for High-speed Interconnects[J]. IEEE Micro, 26, 58-66(2006).

    [73] Sun C, Wade M T, Lee Y et al. Single-chip Microprocessor that Communicates Directly Using Light[J]. Nature, 528, 534-538(2015).

    [74] Eppenberger M, Bonomi M, Moor D et al. Compact Optical TX and RX Macros for Computercom Monolithically Integrated in 45 nm CMOS[J]. Journal of Lightwave Technology, 39, 6869-6879(2021).

    [75] Doerr C, Heanue J, Chen L et al. Silicon Photonics Coherent Transceiver in a Ball-grid Array Package[C], 1-3(2017).

    [76] Muth K, Raghuraman V, Raghunathan V. Paradigm Shift in High-speed Interface Technology[J]. SPIE(2022).

    [77] Moss B R, Sun C, Georgas M et al. A 1. 23 pJ/b 2. 5 Gbit/s Monolithically Integrated Optical Carrier-injection Ring Modulator and All-digital Driver Circuit in Commercial 45 nm SOI[C], 126-127(2013).

    [78] Feilchenfeld N B, Anderson F G, Barwicz T et al. An Integrated Silicon Photonics Technology for O-band Datacom[C], 25.7.1-25.7.4(2015).

    [79] Thomson D, Zilkie A, Bowers J E et al. Roadmap on Silicon Photonics[J]. Journal of Optics, 18, 1-20(2016).

    [80] Siew S Y, Li B, Gao F et al. Review of Silicon Photonics Technology and Platform Development[J]. Journal of Lightwave Technology, 39, 4374-4389(2021).

    [81] Mekis A, Pinguet T, Masini G et al. Advanced Silicon Photonics Transceivers[J]. Silicon Photonics Iii: Systems and Applications, Pavesi, 122, 349-374(2016).

    [82] McKinzie K A, Wang C, Noman A A et al. InP High Power Monolithically Integrated Widely Tunable Laser and SOA Array for Hybrid Integration[J]. Optics Express, 29, 3490-3502(2021).

    [83] Wang Q, Wang S, Jia L et al. Silicon Nitride Assisted 1×64 Optical Phased Array based on a SOI Platform[J]. Optics Express, 29, 10509-10517(2021).

    [84] Kim T, Ngai T, Timalsina Y et al. A Single-Chip Optical Phased Array in a Wafer-Scale Silicon Photonics/CMOS 3D-Integration Platform[J]. IEEE Journal of Solid-State Circuits, 54, 3061-3074(2019).

    [85] Sun X C, Zhang L X, Zhang Q H et al. Si Photonics for Practical LiDAR Solutions[J]. Applied Sciences-Basek, 9(2019).

    [86] Martin A, Verheyen P, De Heyn P et al. Photonic Integrated Circuit-based FMCW Coherent LiDAR[J]. Journal of Lightwave Technology, 36, 4640-4645(2018).

    [87] Doylend J K, Gupta S. An Overview of Silicon Photonics for LIDAR[C], 112850J(2020).

    [88] Van Acoleyen K, Bogaerts W, Jagerska J et al. Off-chip Beam Steering with a One-dimensional Optical Phased Array on Silicon-on-insulator[J]. Optics Letters, 34, 1477-1479(2009).

    [89] Sun J, Timurdogan E, Yaacobi A et al. Large-scale Nanophotonic Phased Array[J]. Nature, 493, 195-199(2013).

    [90] Bhargava P, Kim T, Poulto C V et al. Fully Integrated Coherent LiDAR in 3D-Integrated Silicon Photonics/65 nm CMOS[C], C262-C263(2019).

    [91] Poulton C V, Byrd M J, Russo P et al. Long-Range LiDAR and Free-Space Data Communication with High-Performance Optical Phased Arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-8(2019).

    [93] Dong P, Chen Y K, Duan G H et al. Silicon Photonic Devices and Integrated Circuits[J]. Nanophotonics, 3, 215-228.

    [94] Bieren K V. Lens Design for Optical Fourier Transform Systems[J]. Applied Optics, 10, 2739-2742(1971).

    [95] Shen Y, Harris N C, Skirlo S et al. Deep Learning with Coherent Nanophotonic Circuits[J]. Nature Photonics, 11, 441-446(2017).

    [96] Bernstein L, Sludds A, Hamerly R et al. Freely Scalable and Reconfigurable Optical Hardware for Deep Learning[J]. Scientific Reports, 11, 3144(2021).

    [97] Dong P. Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications[J]. IEEE Journal of Selected Topics in Quantum Electron., 22, 370-378(2016).

    [98] Chang L, Liu S, Bowers J E. Integrated Optical Frequency Comb Technologies[J]. Nature Photonics, 16, 95-108(2022).

    [99] Reck M, Zeilinger A, Bernstein H J et al. Experimental Realization of any Discrete Unitary Operator[J]. Physical Review Letters, 73, 58-61(1994).

    [100] Tait A N, de Lima T F, Zhou E et al. Neuromorphic Photonic Networks Using Silicon Photonic Weight Banks[J]. Scientific Reports, 7, 7430(2017).

    [101] Feldmann J, Youngblod N, Karpov M et al. Parallel Convolutional Processing Using and Integrated Photonic Tensor Core[J]. Nature, 589, 52-58(2021).

    [102] Ashtiani F, Geers A J, Aflatouni F. An On-chip Photonic Deep Neural Network for Image Classification[J]. Nature, 606, 501-506(2022).

    [103] Soler M, Calvo-Lozano O, Estevez M C et al. Nanophotonic Biosensors: Driving Personalized Medicine[J]. Optics and Photonics News, 31, 24-31(2020).

    [104] Ruiz-Vega G, Soler M, Lechuga L M. Nanophotonic Biosensors for Point-of-care COVID-19 Diagnostics and Coronavirus Surveillance[J]. Journal of Physics: Photonics, 3, 011002(2021).

    [105] Brown L V, Zhao K, King N et al. Surface-enhanced Infrared Absorption Using Individual Cross Antennas Tailored to Chemical Moieties[J]. Journal of the American Chemical Society, 135, 3688-3695(2013).

    [106] Kneipp K, Kneipp H, Itzkan I et al. Ultrasensitive Chemical Analysis by Raman Spectroscopy[J]. Chemical Reviews, 99, 2957-2976(1999).

    [107] Ou X, Tang B, Zhang P et al. Microring Resonator based on Polarization Multiplexing for Simultaneous Sensing of Refractive Index and Temperature on Silicon Platform[J]. Optics Express, 30, 25627-25637(2022).

    [108] Tu X, Song J, Liow T Y et al. Thermal Independent Silicon-nitride Slot Waveguide Biosensor with High Sensitivity[J]. Optics Express, 20, 2640-2648(2012).

    [109] Sun F, Zhou J, Huang L et al. High Quality Factor and High Sensitivity Photonic Crystal Rectangular Holes Slot Nanobeam Cavity with Parabolic Modulated Lattice Constant for Refractive Index Sensing[J]. Optics Communications, 399, 56-61(2017).

    [110] Wade J H, Alsop A T, Vertin N R et al. Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays[J]. ACS Cent Sci, 1, 374-382(2015).

    [111] Mudumba S, de Alba S, Romero R et al. Photonic Ring Resonance is a Versatile Platform for Performing Multiplex Immunoassays in Real Time[J]. J Immunol Methods, 448, 34-43(2017).

    [112] Zhang E, Martin Y, Orcutt J et al[M]. Monolithically Integrated Silicon Photonic Chip Sensor for Near-infrared Trace-gas Spectroscopy(2019).

    [114] Rachim V P, Chung W Y. Wearable-band Type Visible-near Infrared Optical Biosensor for Non-invasive Blood Glucose Monitoring[J]. Sensors and Actuators B: Chemical, 286, 173-180(2019).

    [115] Zilkie A J, Srinivasan P, Trita A et al. Multi-micron Silicon Photonics Platform for Highly Manufacturable and Versatile Photonic Integrated Circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-13(2019).

    [116] BAO J M, Chen X J, Ding Y H et al. Silicon-based Photonic Quantum Information Technologies[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 50, 47-51(2020).

    [117] Wang J, Sciarrino F, Laing A et al. Integrated Photonic Quantum Technologies[J]. Nature Photonics, 14, 273-284(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiang-peng OU, Zai-li YANG, Bo TANG, Zhi-hua LI, Jun LUO, Wen-wu WANG, Yan YANG. Silicon Photonic 2.5D/3D Integration Technology and Its Applications[J]. Study On Optical Communications, 2023, 49(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 21, 2022

    Accepted: --

    Published Online: Feb. 15, 2023

    The Author Email: YANG Yan (yyang10@ime.ac.cn)

    DOI:10.13756/j.gtxyj.2023.01.001

    Topics