Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618009(2024)

Noncoherent Raman Spectroscopy and Its Biomedical Application (Invited)

Yuyi Li, Yue Gan, Ben Niu, Jing Huang*, and Qiuqiang Zhan**
Author Affiliations
  • South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, Guangdong, China
  • show less
    References(152)

    [1] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).

    [2] Antonio K A, Schultz Z D. Advances in biomedical Raman microscopy[J]. Analytical Chemistry, 86, 30-46(2014).

    [3] Opilik L, Schmid T, Zenobi R. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales[J]. Annual Review of Analytical Chemistry, 6, 379-398(2013).

    [4] Zapata F, López-Fernández A, Ortega-Ojeda F et al. A practical beginner’s guide to Raman microscopy[J]. Applied Spectroscopy Reviews, 56, 439-462(2020).

    [5] Siraj N, Bwambok D K, Brady P N et al. Raman spectroscopy and multivariate regression analysis in biomedical research, medical diagnosis, and clinical analysis[J]. Applied Spectroscopy Reviews, 56, 615-672(2021).

    [6] Liu F X, Zhang L H, Huang X. Application of Raman spectroscopy in cancer diagnosis[J]. Laser & Optoelectronics Progress, 59, 0617016(2022).

    [7] Zeng Q, Liu R, Wang N et al. Progress of Raman spectroscopy in medical laboratory science(Invited)[J]. Acta Photonica Sinica, 50, 1017002(2021).

    [8] Tian H Y, Liu Y, Huang J Q et al. Research progress and application of surface-enhanced Raman scattering technique in nucleic acid detection[J]. Spectroscopy and Spectral Analysis, 40, 3021-3028(2020).

    [9] Wang W T, Zhang H, Yuan Y et al. Research progress of Raman spectroscopy in drug analysis[J]. AAPS PharmSciTech, 19, 2921-2928(2018).

    [10] Abramczyk H, Brozek-Pluska B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer[J]. Chemical Reviews, 113, 5766-5781(2013).

    [11] Butler H J, Ashton L, Bird B et al. Using Raman spectroscopy to characterize biological materials[J]. Nature Protocols, 11, 664-687(2016).

    [12] Abu Bakar N, Yusoff N N, Nor Azmi F S et al. A review of metal nanoparticle-based surface-enhanced Raman scattering substrates for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection[J]. Aggregate, 4, e339(2023).

    [13] Zong C, Xu M X, Xu L J et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 118, 4946-4980(2018).

    [14] Ding S Y, Yi J, Li J F et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 1, 16021(2016).

    [15] Furtak T E, Roy D. The short-range mechanism of surface enhanced Raman scattering[J]. Surface Science, 158, 126-146(1985).

    [16] Jensen L, Aikens C M, Schatz G C. Electronic structure methods for studying surface-enhanced Raman scattering[J]. Chemical Society Reviews, 37, 1061-1073(2008).

    [17] Morton S M, Jensen L. Understanding the molecule-surface chemical coupling in SERS[J]. Journal of the American Chemical Society, 131, 4090-4098(2009).

    [18] Han X X, Ji W, Zhao B et al. Semiconductor-enhanced Raman scattering: active nanomaterials and applications[J]. Nanoscale, 9, 4847-4861(2017).

    [19] Han X X, Rodriguez R S, Haynes C L et al. Surface-enhanced Raman spectroscopy[J]. Nature Reviews Methods Primers, 1, 87(2022).

    [20] Chang J F, Young T F, Yang Y L et al. Silicide formation of Au thin films on (100) Si during annealing[J]. Materials Chemistry and Physics, 83, 199-203(2004).

    [21] de Los Santos V L, Lee D, Seo J et al. Crystallization and surface morphology of Au/SiO2 thin films following furnace and flame annealing[J]. Surface Science, 603, 2978-2985(2009).

    [22] Liu Z W. Promising nanoimprinting technology[J]. Electronics World, 4-6(2005).

    [23] Wang A X, Kong X M. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering[J]. Materials, 8, 3024-3052(2015).

    [24] Moram S S B, Byram C, Soma V R. Gold-nanoparticle- and nanostar-loaded paper-based SERS substrates for sensing nanogram-level Picric acid with a portable Raman spectrometer[J]. Bulletin of Materials Science, 43, 53(2020).

    [25] Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5‒40 nm diameter gold nanoparticles[J]. Langmuir, 17, 6782-6786(2001).

    [26] Ye X C, Zheng C, Chen J et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods[J]. Nano Letters, 13, 765-771(2013).

    [27] Langille M R, Personick M L, Zhang J et al. Defining rules for the shape evolution of gold nanoparticles[J]. Journal of the American Chemical Society, 134, 14542-14554(2012).

    [28] Niu W X, Chua Y A A, Zhang W Q et al. Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property[J]. Journal of the American Chemical Society, 137, 10460-10463(2015).

    [29] Skrabalak S E, Chen J Y, Sun Y G et al. Gold nanocages: synthesis, properties, and applications[J]. Accounts of Chemical Research, 41, 1587-1595(2008).

    [30] Fan F R, Liu D Y, Wu Y F et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes[J]. Journal of the American Chemical Society, 130, 6949-6951(2008).

    [31] Prats-Montalbán J M, de Juan A, Ferrer A. Multivariate image analysis: a review with applications[J]. Chemometrics and Intelligent Laboratory Systems, 107, 1-23(2011).

    [32] Penny K I, Jolliffe I T. A comparison of multivariate outlier detection methods for clinical laboratory safety data[J]. Journal of the Royal Statistical Society: Series D (the Statistician), 50, 295-307(2001).

    [33] Ehrentreich F, Sümmchen L. Spike removal and denoising of Raman spectra by wavelet transform methods[J]. Analytical Chemistry, 73, 4364-4373(2001).

    [34] Zhang L, Henson M J. A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications[J]. Applied Spectroscopy, 61, 1015-1020(2007).

    [35] Cannistraci C V, Montevecchi F M, Alessio M. Median-modified Wiener filter provides efficient denoising, preserving spot edge and morphology in 2-DE image processing[J]. Proteomics, 9, 4908-4919(2009).

    [36] Behrend C J, Tarnowski C P, Morris M D. Identification of outliers in hyperspectral Raman image data by nearest neighbor comparison[J]. Applied Spectroscopy, 56, 1458-1461(2002).

    [37] Du P, Kibbe W A, Lin S M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching[J]. Bioinformatics, 22, 2059-2065(2006).

    [38] Tseng C H, Ford J F, Mann C K et al. Wavelength calibration of a multichannel spectrometer[J]. Applied Spectroscopy, 47, 1808-1813(1993).

    [39] Bocklitz T W, Guo S X, Ryabchykov O et al. Raman based molecular imaging and analytics: a magic bullet for biomedical applications!?[J]. Analytical Chemistry, 88, 133-151(2016).

    [40] Brennan J F III, Wang Y, Dasari R R et al. Near-infrared Raman spectrometer systems for human tissue studies[J]. Applied Spectroscopy, 51, 201-208(1997).

    [41] Pelletier M J. Quantitative analysis using Raman spectrometry[J]. Applied Spectroscopy, 57, 20A-42A(2003).

    [42] Dyrby M. Towards on-line monitoring of the composition of commercial carrageenan powders[J]. Carbohydrate Polymers, 57, 337-348(2004).

    [43] Sohn M, Himmelsbach D S, Barton F E II. A comparative study of Fourier transform Raman and NIR spectroscopic methods for assessment of protein and apparent amylose in rice[J]. Cereal Chemistry, 81, 429-433(2004).

    [44] Knorr F, Smith Z J, Wachsmann-Hogiu S. Development of a time-gated system for Raman spectroscopy of biological samples[J]. Optics Express, 18, 20049-20058(2010).

    [45] Praveen B B, Ashok P C, Mazilu M et al. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis[J]. Journal of Biomedical Optics, 17, 0770061(2012).

    [46] Guo S X, Chernavskaia O, Popp J et al. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS)[J]. Talanta, 186, 372-380(2018).

    [47] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 36, 1627-1639(1964).

    [48] Guo S X, Popp J, Bocklitz T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling[J]. Nature Protocols, 16, 5426-5459(2021).

    [49] Trevisan J, Angelov P P, Carmichael P L et al. Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives[J]. The Analyst, 137, 3202-3215(2012).

    [50] Chen G Y, Qian S N. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 973-980(2011).

    [51] Wolthuis R, Tjiang G C H, Puppels G J et al. Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra[J]. Journal of Raman Spectroscopy, 37, 447-466(2006).

    [52] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C], 1137-1143(1995).

    [53] Cawley G C, Talbot N L C. On over-fitting in model selection and subsequent selection bias in performance evaluation[J]. Journal of Machine Learning Research, 11, 2079-2107(2010).

    [54] Guo S X, Bocklitz T, Neugebauer U et al. Common mistakes in cross-validating classification models[J]. Analytical Methods, 9, 4410-4417(2017).

    [55] Li S X, Li L F, Zeng Q Y et al. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms[J]. Scientific Reports, 5, 9582(2015).

    [56] Zheng X X, Lü G D, Zhang Y et al. Rapid and non-invasive screening of high renin hypertension using Raman spectroscopy and different classification algorithms[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 215, 244-248(2019).

    [57] Otange B, Birech Z, Rop R et al. Estimation of HIV-1 viral load in plasma of HIV-1-infected people based on the associated Raman spectroscopic peaks[J]. Journal of Raman Spectroscopy, 50, 620-628(2019).

    [58] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 20, 273-297(1995).

    [59] Dingari N C, Barman I, Saha A et al. Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications[J]. Journal of Biophotonics, 6, 371-381(2013).

    [60] Ghosh K, Stuke A, Todorović M et al. Deep learning spectroscopy: neural networks for molecular excitation spectra[J]. Advanced Science, 6, 1801367(2019).

    [61] Yang J, Xu J F, Zhang X L et al. Deep learning for vibrational spectral analysis: recent progress and a practical guide[J]. Analytica Chimica Acta, 1081, 6-17(2019).

    [63] Liu W J, Wang H B, Du J J et al. Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis[J]. Biosensors and Bioelectronics, 97, 70-74(2017).

    [64] Zhang Z, Wang J, Shanmugasundaram K B et al. Tracking drug-induced epithelial-mesenchymal transition in breast cancer by a microfluidic surface-enhanced Raman spectroscopy immunoassay[J]. Small, 16, 1905614(2020).

    [65] Volkov V V, McMaster J, Aizenberg J et al. Mapping blood biochemistry by Raman spectroscopy at the cellular level[J]. Chemical Science, 13, 133-140(2022).

    [66] Pieczara A, Borek-Dorosz A, Buda S et al. Modified glucose as a sensor to track the metabolism of individual living endothelial cells - Observation of the 1602cm-1 band called “Raman spectroscopic signature of life”[J]. Biosensors and Bioelectronics, 230, 115234(2023).

    [67] Jiang L Y, Ren M X, Niu G et al. Label-free, rapid and highly accurate identification and categorization of leukemia cells via Raman spectroscopy[J]. Sensors and Actuators B: Chemical, 395, 134497(2023).

    [68] Roman M, Wrobel T P, Panek A et al. Lipid droplets in prostate cancer cells and effect of irradiation studied by Raman microspectroscopy[J]. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1865, 158753(2020).

    [69] Wu H H, Ho J H, Lee O K. Detection of hepatic maturation by Raman spectroscopy in mesenchymal stromal cells undergoing hepatic differentiation[J]. Stem Cell Research & Therapy, 7, 6(2016).

    [70] Geng J N, Zhang W, Chen C et al. Tracking the differentiation status of human neural stem cells through label-free Raman spectroscopy and machine learning-based analysis[J]. Analytical Chemistry, 93, 10453-10461(2021).

    [71] Wang J F, Qi G H, Qu X Z et al. Molecular profiling of dental pulp stem cells during cell differentiation by surface enhanced Raman spectroscopy[J]. Analytical Chemistry, 92, 3735-3741(2020).

    [72] Gravely M, Roxbury D. Multispectral fingerprinting resolves dynamics of nanomaterial trafficking in primary endothelial cells[J]. ACS Nano, 15, 12388-12404(2021).

    [73] Lenzi E, Henriksen-Lacey M, Molina B et al. Combination of live cell surface-enhanced Raman scattering imaging with chemometrics to study intracellular nanoparticle dynamics[J]. ACS Sensors, 7, 1747-1756(2022).

    [74] Wen Y, Truong V X, Li M. Real-time intraoperative surface-enhanced Raman spectroscopy-guided thermosurgical eradication of residual microtumors in orthotopic breast cancer[J]. Nano Letters, 21, 3066-3074(2021).

    [75] Noonan J, Asiala S M, Grassia G et al. In vivo multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy[J]. Theranostics, 8, 6195-6209(2018).

    [76] Haka A S, Shafer-Peltier K E, Fitzmaurice M et al. Diagnosing breast cancer by using Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 12371-12376(2005).

    [77] Shang L W, Tang J L, Wu J J et al. Polarized micro-raman spectroscopy and 2D convolutional neural network applied to structural analysis and discrimination of breast cancer[J]. Biosensors, 13, 65(2022).

    [78] Vanna R, Morasso C, Marcinnò B et al. Raman spectroscopy reveals that biochemical composition of breast microcalcifications correlates with histopathologic features[J]. Cancer Research, 80, 1762-1772(2020).

    [79] Huang Z W, McWilliams A, Lui H et al. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer[J]. International Journal of Cancer, 107, 1047-1052(2003).

    [80] Zhang K, Hao C Y, Huo Y Y et al. Label-free diagnosis of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and statistical analysis[J]. Lasers in Medical Science, 34, 1849-1855(2019).

    [81] Leblond F, Dallaire F, Tran T et al. Subsecond lung cancer detection within a heterogeneous background of normal and benign tissue using single-point Raman spectroscopy[J]. Journal of Biomedical Optics, 28, 090501(2023).

    [82] Crow P, Stone N, Kendall C A et al. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro[J]. British Journal of Cancer, 89, 106-108(2003).

    [83] Theophilou G, Lima K M G, Briggs M et al. A biospectroscopic analysis of human prostate tissue obtained from different time periods points to a trans-generational alteration in spectral phenotype[J]. Scientific Reports, 5, 13465(2015).

    [84] Aubertin K, Trinh V, Jermyn M et al. Raman spectroscopy for prostate cancer detection and characterization[J]. Biophysical Journal, 112, 584a(2017).

    [85] Doherty T, McKeever S, Al-Attar N et al. Feature fusion of Raman chemical imaging and digital histopathology using machine learning for prostate cancer detection[J]. Analyst, 146, 4195-4211(2021).

    [86] O’Brien C M, Vargis E, Rudin A et al. In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy[J]. American Journal of Obstetrics and Gynecology, 218, 528.e1-528.e18(2018).

    [87] Gao X H, Yue Q, Liu Z N et al. Guiding brain-tumor surgery via blood-brain-barrier-permeable gold nanoprobes with acid-triggered MRI/SERRS signals[J]. Advanced Materials, 29, 1603917(2017).

    [88] Qiu Y Y, Lin M, Chen G X et al. Photodegradable CuS SERS probes for intraoperative residual tumor detection, ablation, and self-clearance[J]. ACS Applied Materials & Interfaces, 11, 23436-23444(2019).

    [89] Shin H, Choi B H, Shim O et al. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers[J]. Nature Communications, 14, 1644(2023).

    [90] Feng S Y, Huang S H, Lin D et al. Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors[J]. International Journal of Nanomedicine, 10, 537-547(2015).

    [91] Rohleder D, Kiefer W, Petrich W. Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy[J]. The Analyst, 129, 906-911(2004).

    [92] Qi D H, Berger A J. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy[J]. Applied Optics, 46, 1726-1734(2007).

    [93] Barman I, Dingari N C, Kang J W et al. Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin[J]. Analytical Chemistry, 84, 2474-2482(2012).

    [94] Dingari N C, Horowitz G L, Kang J W et al. Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation[J]. PLoS One, 7, e32406(2012).

    [95] Nechaeva N L, Boginskaya I A, Ivanov A V et al. Multiscale flaked silver SERS-substrate for glycated human albumin biosensing[J]. Analytica Chimica Acta, 1100, 250-257(2020).

    [96] Paria D, Convertino A, Mussi V et al. Silver-coated disordered silicon nanowires provide highly sensitive label-free glycated albumin detection through molecular trapping and plasmonic hotspot formation[J]. Advanced Healthcare Materials, 10, e2001110(2021).

    [97] Slipchenko E A, Boginskaya I A, Safiullin R R et al. SERS sensor for human glycated albumin direct assay based on machine learning methods[J]. Chemosensors, 10, 520(2022).

    [98] Ye M L, Chen Y, Wang Y T et al. Subtype discrimination of acute myeloid leukemia based on plasma SERS technique[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 271, 120865(2022).

    [99] Shin H, Oh S, Hong S et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes[J]. ACS Nano, 14, 5435-5444(2020).

    [100] Lin D, Wang Y Y, Wang T Y et al. Metabolite profiling of human blood by surface-enhanced Raman spectroscopy for surgery assessment and tumor screening in breast cancer[J]. Analytical and Bioanalytical Chemistry, 412, 1611-1618(2020).

    [101] Cui X Y, Liu T, Xu X S et al. Label-free detection of multiple genitourinary cancers from urine by surface-enhanced Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 240, 118543(2020).

    [102] Lin J Y, Feng S Y, Zhang X Z. Combining urine surface-enhanced Raman spectroscopy with PCA-SVM algorithm for improving the identification of colorectal cancer at different stages[J]. Optoelectronics Letters, 19, 101-104(2023).

    [103] Kong X D, Liang H Y, An W et al. Rapid identification of early renal damage in asymptomatic hyperuricemia patients based on urine Raman spectroscopy and bioinformatics analysis[J]. Frontiers in Chemistry, 11, 1045697(2023).

    [104] Huang Z L, Feng S J, Guan Q N et al. Correlation of surface-enhanced Raman spectroscopic fingerprints of kidney transplant recipient urine with kidney function parameters[J]. Scientific Reports, 11, 2463(2021).

    [105] Yang H N, Zhao C, Li R et al. Noninvasive and prospective diagnosis of coronary heart disease with urine using surface-enhanced Raman spectroscopy[J]. The Analyst, 143, 2235-2242(2018).

    [106] Roman M, Kamińska A, Drożdż A et al. Raman spectral signatures of urinary extracellular vesicles from diabetic patients and hyperglycemic endothelial cells as potential biomarkers in diabetes[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 17, 137-149(2019).

    [107] Robertson J L, Senger R S, Talty J et al. Alterations in the molecular composition of COVID-19 patient urine, detected using Raman spectroscopic/computational analysis[J]. PLoS One, 17, e0270914(2022).

    [108] Feng S Y, Lin D, Lin J Q et al. Saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy for nasopharyngeal cancer detection[J]. Applied Physics Letters, 104, 073702(2014).

    [109] Connolly J M, Davies K, Kazakeviciute A et al. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 12, 1593-1601(2016).

    [110] Zamora-Mendoza B N, Espinosa-Tanguma R, Ramírez-Elías M G et al. Surface-enhanced Raman spectroscopy: a non invasive alternative procedure for early detection in childhood asthma biomarkers in saliva[J]. Photodiagnosis and Photodynamic Therapy, 27, 85-91(2019).

    [111] Buchan E, Majumder S, Nardone O et al. P263 Raman spectroscopy analysis of saliva combined with an artificial neural network algorithm could discriminate between Ulcerative Colitis and Crohn’s disease[J]. Journal of Crohn’s and Colitis, 17, i411-i412(2023).

    [112] Ho C S, Jean N, Hogan C A et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J]. Nature Communications, 10, 4927(2019).

    [113] Yang Y J, Xu B B, Murray J et al. Rapid and quantitative detection of respiratory viruses using surface-enhanced Raman spectroscopy and machine learning[J]. Biosensors and Bioelectronics, 217, 114721(2022).

    [114] Wang L, Zhang X D, Tang J W et al. Machine learning analysis of SERS fingerprinting for the rapid determination of Mycobacterium tuberculosis infection and drug resistance[J]. Computational and Structural Biotechnology Journal, 20, 5364-5377(2022).

    [115] Das S, Saxena K, Tinguely J C et al. SERS nanowire chip and machine learning-enabled classification of wild-type and antibiotic-resistant bacteria at species and strain levels[J]. ACS Applied Materials & Interfaces, 15, 24047-24058(2023).

    [116] Thomsen B L, Christensen J B, Rodenko O et al. Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning[J]. Scientific Reports, 12, 16436(2022).

    [117] Tang J W, Li J Q, Yin X C et al. Rapid discrimination of clinically important pathogens through machine learning analysis of surface enhanced Raman spectra[J]. Frontiers in Microbiology, 13, 843417(2022).

    [118] Yi X F, Song Y Z, Xu X G et al. Development of a fast raman-assisted antibiotic susceptibility test (FRAST) for the antibiotic resistance analysis of clinical urine and blood samples[J]. Analytical Chemistry, 93, 5098-5106(2021).

    [119] Yang K, Li H Z, Zhu X et al. Rapid antibiotic susceptibility testing of pathogenic bacteria using heavy-water-labeled single-cell Raman spectroscopy in clinical samples[J]. Analytical Chemistry, 91, 6296-6303(2019).

    [120] Tong D N, Chen C, Zhang J J et al. Application of Raman spectroscopy in the detection of hepatitis B virus infection[J]. Photodiagnosis and Photodynamic Therapy, 28, 248-252(2019).

    [121] Saleem M, Ali S, Khan M B et al. Optical diagnosis of hepatitis B virus infection in blood plasma using Raman spectroscopy and chemometric techniques[J]. Journal of Raman Spectroscopy, 51, 1067-1077(2020).

    [122] Garsuault D, El Messaoudi S, Prabakaran M et al. Detection of several respiratory viruses with Surface-Enhanced Raman Spectroscopy coupled with Artificial Intelligence[J]. Clinical Spectroscopy, 5, 100025(2023).

    [123] Rumaling M I, Chee F P, Bade A et al. Biofingerprint detection of corona virus using Raman spectroscopy: a novel approach[J]. SN Applied Sciences, 5, 197(2023).

    [124] Akdeniz M, Al-Shaebi Z, Altunbek M et al. Characterization and discrimination of spike protein in SARS-CoV-2 virus-like particles via surface-enhanced Raman spectroscopy[J]. Biotechnology Journal, 19, 2300191(2024).

    [125] Samodelova M V, Kapitanova O O, Meshcheryakova N F et al. Model of the SARS-CoV-2 virus for development of a DNA-modified, surface-enhanced Raman spectroscopy sensor with a novel hybrid plasmonic platform in sandwich mode[J]. Biosensors, 12, 768(2022).

    [126] Müller W, Kielhorn M, Schmitt M et al. Light sheet Raman micro-spectroscopy[J]. Optica, 3, 452-457(2016).

    [127] Dunn L, Luo H K, Subedi N R et al. Video-rate Raman-based metabolic imaging by Airy light-sheet illumination and photon-sparse detection[J]. Proceedings of the National Academy of Sciences of the United States of America, 120, 2210037120(2023).

    [128] Yang W, Knorr F, Latka I et al. Real-time molecular imaging of near-surface tissue using Raman spectroscopy[J]. Light: Science & Applications, 11, 90(2022).

    [129] dos Santos D P, Temperini M L A, Brolo A G. Intensity fluctuations in single-molecule surface-enhanced Raman scattering[J]. Accounts of Chemical Research, 52, 456-464(2019).

    [130] Willets K A. Super-resolution imaging of SERS hot spots[J]. Chemical Society Reviews, 43, 3854-3864(2014).

    [131] Lindquist N C, de Albuquerque C D L, Sobral-Filho R G et al. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles[J]. Nature Nanotechnology, 14, 981-987(2019).

    [132] Stranahan S M, Willets K A. Super-resolution optical imaging of single-molecule SERS hot spots[J]. Nano Letters, 10, 3777-3784(2010).

    [133] de Albuquerque C D L, Hokanson K M, Thorud S R et al. Dynamic imaging of multiple SERS hotspots on single nanoparticles[J]. ACS Photonics, 7, 434-443(2020).

    [134] Ayas S, Cinar G, Ozkan A D et al. Label-free nanometer-resolution imaging of biological architectures through surface enhanced Raman scattering[J]. Scientific Reports, 3, 2624(2013).

    [135] Olson A P, Spies K B, Browning A C et al. Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates[J]. Scientific Reports, 7, 9135(2017).

    [136] de Albuquerque C D L, Schultz Z D. Super-resolution surface-enhanced Raman scattering imaging of single particles in cells[J]. Analytical Chemistry, 92, 9389-9398(2020).

    [137] Watanabe K, Palonpon A F, Smith N I et al. Structured line illumination Raman microscopy[J]. Nature Communications, 6, 10095(2015).

    [138] Chen H K, Wang S Q, Zhang Y Q et al. Structured illumination for wide-field Raman imaging of cell membranes[J]. Optics Communications, 402, 221-225(2017).

    [139] Chen H K, Wu X J, Zhang Y Q et al. Wide-field in situ multiplexed Raman imaging with superresolution[J]. Photonics Research, 6, 530(2018).

    [140] Bakthavatsalam S, Dodo K, Sodeoka M. A decade of alkyne-tag Raman imaging (ATRI): applications in biological systems[J]. RSC Chemical Biology, 2, 1415-1429(2021).

    [141] Zhao Z L, Shen Y H, Hu F H et al. Applications of vibrational tags in biological imaging by Raman microscopy[J]. Analyst, 142, 4018-4029(2017).

    [142] Wei L, Chen Z X, Shi L X et al. Super-multiplex vibrational imaging[J]. Nature, 544, 465-470(2017).

    [143] Hu F H, Zeng C, Long R et al. Supermultiplexed optical imaging and barcoding with engineered polyynes[J]. Nature Methods, 15, 194-200(2018).

    [144] Ma X Y, Wang H J, Wang Y et al. Improving the resolution and the throughput of spectrometers by a digital projection slit[J]. Optics Express, 25, 23045-23050(2017).

    [145] Qiu J, Qi X D, Li X T et al. Development of a spatial heterodyne Raman spectrometer with echelle-mirror structure[J]. Optics Express, 26, 11994-12006(2018).

    [146] Egan M J, Acosta-Maeda T E, Angel S M et al. One-mirror, one-grating spatial heterodyne spectrometer for remote-sensing Raman spectroscopy[J]. Journal of Raman Spectroscopy, 51, 1794-1801(2020).

    [147] Kim U J, Lee S, Kim H et al. Drug classification with a spectral barcode obtained with a smartphone Raman spectrometer[J]. Nature Communications, 14, 5262(2023).

    [148] Cai F H, Tang R N, Wang S W et al. A compact line-detection spectrometer with a Powell lens[J]. Optik, 155, 267-272(2018).

    [149] Cho Y C, Ahn S I. Fabricating a Raman spectrometer using an optical pickup unit and pulsed power[J]. Scientific Reports, 10, 11692(2020).

    [150] Sigle M, Rohlfing A K, Kenny M et al. Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution[J]. Nature Communications, 14, 5799(2023).

    [151] Pliss A, Kuzmin A N, Lita A et al. A single-organelle optical omics platform for cell science and biomarker discovery[J]. Analytical Chemistry, 93, 8281-8290(2021).

    [152] Cutshaw G, Uthaman S, Hassan N et al. The emerging role of Raman spectroscopy as an omics approach for metabolic profiling and biomarker detection toward precision medicine[J]. Chemical Reviews, 123, 8297-8346(2023).

    Tools

    Get Citation

    Copy Citation Text

    Yuyi Li, Yue Gan, Ben Niu, Jing Huang, Qiuqiang Zhan. Noncoherent Raman Spectroscopy and Its Biomedical Application (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Feb. 5, 2024

    Accepted: Feb. 19, 2024

    Published Online: Mar. 18, 2024

    The Author Email: Huang Jing (jing_huang@scnu.edu.cn), Zhan Qiuqiang (zhanqiuqiang@m.scnu.edu.cn)

    DOI:10.3788/LOP240661

    Topics