Optics and Precision Engineering, Volume. 29, Issue 9, 2178(2021)
Classification of real-time digital PCR amplification curves
[1] M JONES, J WILLIAMS, K GÄRTNER et al. Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, ‘definetherain’. Journal of Virological Methods, 202, 46-53(2014).
[2] Y F JIANG, H F WANG, S J HAO et al. Digital PCR is a sensitive new technique for SARS-CoV-2 detection in clinical applications. Clinica Chimica Acta, 511, 346-351(2020).
[3] L H DONG, J B ZHOU, C Y NIU et al. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta, 224, 121726(2021).
[4] L XU, H J QU, D G ALONSO et al. Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples. Biosensors and Bioelectronics, 175, 112908(2021).
[5] M R DEZAN, A C PERON, T G M OLIVEIRA et al. Using droplet digital PCR to screen for rare blood donors: Proof of principle. Transfusion and Apheresis Science, 59, 102882(2020).
[6] L CAO, X Y CUI, J HU et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosensors and Bioelectronics, 90, 459-474(2017).
[7] E MAREMONTI, D A BREDE, A K OLSEN et al. Ionizing radiation, genotoxic stress, and mitochondrial DNA copy-number variation in Caenorhabditis elegans: droplet digital PCR analysis. Genetic Toxicology and Environmental Mutagenesis, 859, 503277(2020).
[8] A SALMAN, H CARNEY, S BATESON et al. Shunting microfluidic PCR device for rapid bacterial detection. Talanta, 207, 120303(2020).
[9] X D MAO, C LIU, H TONG et al. Principles of digital PCR and its applications in current obstetrical and gynecological diseases. American Journal of Translational Research, 11, 7209-7222(2019).
[10] C M O’KEEFE, A M KAUSHIK, T H WANG. Highly efficient real-time droplet analysis platform for high-throughput interrogation of DNA sequences by melt. Analytical Chemistry, 91, 11275-11282(2019).
[11] J TELLINGHUISEN. dPCR vs. qPCR: The role of Poisson statistics at low concentrations. Analytical Biochemistry, 611, 113946(2020).
[12] J F HUGGETT, S COWEN. Considerations for digital PCR as an accurate molecular diagnostic tool. Clinical Chemistry, 61, 79-88(2015).
[13] R BO, H AWANO, K NISHIDA et al. False positive cases of elevated tetradecenoyl carnitine in newborn mass screening showed significant loss of body weight. Molecular Genetics and Metabolism Reports, 24, 100634(2020).
[14] I HUDECOVA. Digital PCR analysis of circulating nucleic acids. Clinical Biochemistry, 48, 948-956(2015).
[15] B K M JACOBS, E GOETGHEBEUR, J VANDESOMPELE et al. Model-based classification for digital PCR: your umbrella for rain. Analytical Chemistry, 89, 4461-4467(2017).
[16] [16] 16刘丽, 孙刘杰, 王文举. 基于SVM的高通量dPCR基因芯片荧光图像分类研究[J]. 包装工程, 2020, 41(19): 223-229.LIUL, SUNL J, WANGW J. Classification of fluorescent images in high-throughput dPCR gene chips based on SVM[J]. Packaging Engineering, 2020, 41(19): 223-229. (in Chinese)
[17] T DREO, M PIRC, Ž RAMŠAK et al. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Analytical and Bioanalytical Chemistry, 406, 6513-6528(2014).
[18] [18] 18苟彤. 基于智能手机的手持式数字PCR系统开发及其应用研究[D]. 杭州: 浙江大学, 2019. doi: 10.1134/s0514749219040244GOU T, Development of Smartphone-based Mobile Digital PCR System and Its Application[D]. Hangzhou: Zhejiang University, 2019. (in Chinese). doi: 10.1134/s0514749219040244
[19] M BAKER. Digital PCR hits its stride. Nature Methods, 9, 541-544(2012).
[20] A S ARTYUHOV, E B DASHINIMAEV, N V MESCHERYAKOVA et al. Detection of small numbers of iPSCs in different heterogeneous cell mixtures with highly sensitive droplet digital PCR. Molecular Biology Reports, 46, 6675-6683(2019).
[21] [21] 21朱文艳, 周连群, 张芷齐, 等. 微孔式数字PCR荧光芯片的自动对焦[J]. 光学 精密工程, 2020, 28(9): 2065-2075. doi: 10.37188/OPE.20202809.2065ZHUW Y, ZHOUL Q, ZHANGZH Q, et al. Autofocus of microarray digital PCR fluorescent chip[J]. Opt. Precision Eng., 2020, 28(9): 2065-2075. (in Chinese). doi: 10.37188/OPE.20202809.2065
[22] [22] 22邱亚军, 李金泽, 李传宇, 等. 高通量数字化毛细管微阵列芯片[J]. 光学 精密工程, 2019, 27(6): 1237-1244. doi: 10.3788/ope.20192706.1237QIUY J, LIJ Z, LICH Y, et al. High-throughput digital capillary microarray[J]. Opt. Precision Eng., 2019, 27(6): 1237-1244. (in Chinese). doi: 10.3788/ope.20192706.1237
[23] V KLIPPENSTEIN, L MONY, P PAOLETTI. Probing ion channel structure and function using light-sensitive amino acids. Trends in Biochemical Sciences, 43, 436-451(2018).
[24] [24] 24李树力, 李金泽, 郭振, 等. 蜂窝状数字PCR微阵列荧光图像的信息提取[J]. 光学 精密工程, 2020, 28(12): 2745-2755. doi: 10.37188/OPE.20202812.2745LISH L, LIJ Z, GUOZH, et al. Extraction of fluorescent image information from cellular digital PCR microarray[J]. Opt. Precision Eng., 2020, 28(12): 2745-2755. (in Chinese). doi: 10.37188/OPE.20202812.2745
[25] H SANZ, C VALIM, E VEGAS et al. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics, 19, 1-18(2018).
[26] X CHEN, S Y XU, S M LI et al. Identification of architectural elements based on SVM with PCA: a case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China. Journal of Petroleum Science and Engineering, 198, 108247(2021).
[27] X CHEN, S Y XU, S M LI et al. Identification of architectural elements based on SVM with PCA: a case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China. Journal of Petroleum Science and Engineering, 198, 108247(2021).
[28] B L XU, S F SHEN, F R SHEN et al. Locally linear SVMs based on boundary anchor points encoding. Neural Networks, 117, 274-284(2019).
[29] R L BRENNAN, D J PREDIGER. Coefficient kappa: some uses, misuses, and alternatives. Educational and Psychological Measurement, 41, 687-699(1981).
[30] W TRYPSTEEN, M VYNCK, J DE NEVE et al. ddpcRquant: threshold determination for single channel droplet digital PCR experiments. Analytical and Bioanalytical Chemistry, 407, 5827-5834(2015).
[31] N COCCARO, G TOTA, L ANELLI et al. Digital PCR: a reliable tool for analyzing and monitoring hematologic malignancies. International Journal of Molecular Sciences, 21, 3141(2020).
Get Citation
Copy Citation Text
Yuan-yuan LUO, Jia YAO, Dong-shu LI, Xun-hua ZHU, Shu-li LI, Lian-qun ZHOU, Zhen GUO. Classification of real-time digital PCR amplification curves[J]. Optics and Precision Engineering, 2021, 29(9): 2178
Category: Micro/Nano Technology and Fine Mechanics
Received: Mar. 2, 2021
Accepted: --
Published Online: Nov. 22, 2021
The Author Email: ZHOU Lian-qun (zhoulq@sibet.ac.cn), GUO Zhen (guozhen@sibet.ac.cn)