High Power Laser and Particle Beams, Volume. 34, Issue 1, 011001(2022)
Laser driven dynamic compression of materials
[1] Fratanduono D E, Millot M, Braun D G, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression[J]. Science, 372, 1063-1068(2021).
[2] Jeanloz R. Calibrating experiments at atom-crushing pressures[J]. Science, 372, 1037-1038(2021).
[3] Eliezer S. The interaction of high-power lasers with plasmas[J]. Plasma Physics and Controlled Fusion, 45, 181(2003).
[4] Campbell E M, Goncharov V N, Sangster T C, et al. Laser-direct-drive program: promise, challenge, and path forward[J]. Matter and Radiation at Extremes, 2, 37-54(2017).
[5] Duan Xiaoxi, Zhang Chen, Guan Zanyang, et al. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading[J]. Journal of Applied Physics, 128, 015902(2020).
[8] Ng A, Pasini D, Celliers P, et al. Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption[J]. Applied Physics Letters, 45, 1046-1048(1984).
[9] Dahmani F, Kerdja T. Laser-intensity and wavelength dependence of mass-ablation rate, ablation pressure, and heat-flux inhibition in laser-produced plasmas[J]. Physical Review A, 44, 2649-2655(1991).
[10] Fratanduono D E, Boehly T R, Celliers P M, et al. The direct measurement of ablation pressure driven by 351-nm laser radiation[J]. Journal of Applied Physics, 110, 073110(2011).
[11] Xue Quanxi, Wang Zhebin, Jiang Shaoen, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 21, 072709(2014).
[12] Ferriter N, Maiden D E, Winslow A M, et al. Laser-beam optimization for momentum transfer by laser-supported detonation waves[J]. AIAA Journal, 15, 1597-1603(1977).
[13] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).
[14] Duffy T S, Smith R F. Ultra-high pressure dynamic compression of geological materials[J]. Frontiers in Earth Science, 7, 23(2019).
[15] Jeanloz R, Celliers P M, Collins G W, et al. Achieving high-density states through shock-wave loading of precompressed samples[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 9172-9177(2007).
[16] Bradley D K, Eggert J H, Hicks D G, et al. Shock compressing diamond to a conducting fluid[J]. Physical Review Letters, 93, 195506(2004).
[17] Eggert J H, Hicks D G, Celliers P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics, 6, 40-43(2010).
[18] Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 92, 075002(2004).
[20] Smith R F, Eggert J H, Jankowski A, et al. Stiff response of aluminum under ultrafast shockless compression to 110 GPA[J]. Physical Review Letters, 98, 065701(2007).
[21] Brygoo S, Millot M, Loubeyre P, et al. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium[J]. Journal of Applied Physics, 118, 195901(2015).
[22] Brygoo S, Loubeyre P, Millot M, et al. Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions[J]. Nature, 593, 517-521(2021).
[23] Millot M, Hamel S, Rygg J R, et al. Experimental evidence for superionic water ice using shock compression[J]. Nature Physics, 14, 297-302(2018).
[24] Kimura T, Ozaki N, Okuchi T, et al. Significant static pressure increase in a precompression cell target for laser-driven advanced dynamic compression experiments[J]. Physics of Plasmas, 17, 054502(2010).
[25] Crandall L E, Rygg J R, Spaulding D K, et al. Equation of state of CO2 shock compressed to 1 TPa[J]. Physical Review Letters, 125, 165701(2020).
[26] Shu Hua, Li Jiangtao, Tu Yucheng, et al. Measurement of the sound velocity of shock compressed water[J]. Scientific Reports, 11, 6116(2021).
[27] Kraus D, Vorberger J, Pak A, et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions[J]. Nature Astronomy, 1, 606-611(2017).
[28] Jeanloz R. Shock wave equation of state and finite strain theory[J]. Journal of Geophysical Research: Solid Earth, 94, 5873-5886(1989).
[29] Jeanloz R. Universal equation of state[J]. Physical Review B, 38, 805-807(1988).
[30] Jeanloz R. Finite-strain equation of state for high-pressure phases[J]. Geophysical Research Letters, 8, 1219-1222(1981).
[31] Fu Sizu, Huang Xiuguang, Ma Minxun, et al. Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hugoniot data of Cu up to ~ 2.24TPa with high precision[J]. Journal of Applied Physics, 101, 043517(2007).
[32] [32] Manuel A M, Millot M, Seppala L G, et al. Upgrades to the VISARstreaked optical pyrometer (SOP) system on NIF[C]Proceedings of SPIE 9591, Target Diagnostics Physics Engineering f Inertial Confinement Fusion IV. 2015: 959104.
[33] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 75, 4916-4929(2004).
[34] Weng Jidong, Wang Xiang, Ma Yun, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser[J]. Review of Scientific Instruments, 79, 113101(2008).
[35] Tao Tianjiong, Liu Shenggang, Ma Heli, et al. Twiddle factor neutralization method for heterodyne velocimetry[J]. Review of Scientific Instruments, 85, 013101(2014).
[36] Luo Binqiang, Li Mu, Wang Guiji, et al. Strain rate and hydrostatic pressure effects on strength of iron[J]. Mechanics of Materials, 114, 142-146(2017).
[37] Grant S C, Ao T, Seagle C T, et al. Equation of state measurements on iron near the melting curve at planetary core conditions by shock and ramp compressions[J]. Journal of Geophysical Research: Solid Earth, 126, e2020JB020008(2021).
[38] Park H S, Ali S J M, Celliers P M, et al. Techniques for studying materials under extreme states of high energy density compression[J]. Physics of Plasmas, 28, 060901(2021).
[39] Prisbrey S T, Park H S, Remington B A, et al. Tailored ramp-loading via shock release of stepped-density reservoirs[J]. Physics of Plasmas, 19, 056311(2012).
[40] Löwer T, Kondrashov V N, Basko M, et al. Reflectivity and optical brightness of laser-induced shocks in silicon[J]. Physical Review Letters, 80, 4000-4003(1998).
[41] Ng A, Ao T. Nonequilibrium and non-steady-state evolution of a shock state[J]. Physical Review Letters, 91, 035002(2003).
[42] Lee P A, Citrin P H, Eisenberger P, et al. Extended X-ray absorption fine structure—its strengths and limitations as a structural tool[J]. Reviews of Modern Physics, 53, 769-806(1981).
[43] Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 15, 062703(2008).
[44] Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 12, 092703(2005).
[45] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti[J]. Physical Review Letters, 92, 095504(2004).
[46] Brown F L H, Wilson K R, Cao Jianshu. Ultrafast extended X-ray absorption fine structure (EXAFS)--theoretical considerations[J]. The Journal of Chemical Physics, 111, 6238-6246(1999).
[47] Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Physical Review Letters, 111, 065501(2013).
[48] Voigt K, Zhang M, Ramakrishna K, et al. Demonstration of an X-ray Raman spectroscopy setup to study warm dense carbon at the high energy density instrument of European XFEL[J]. Physics of Plasmas, 28, 082701(2021).
[49] Millot M. Identifying and discriminating phase transitions along decaying shocks with line imaging Doppler interferometric velocimetry and streaked optical pyrometry[J]. Physics of Plasmas, 23, 014503(2016).
[50] Millot M, Dubrovinskaia N, Černok A, et al. Shock compression of stishovite and melting of silica at planetary interior conditions[J]. Science, 347, 418-420(2015).
[51] Spaulding D K, Mcwilliams R S, Jeanloz R, et al. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions[J]. Physical Review Letters, 108, 065701(2012).
[52] Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 97, 025502(2006).
[53] McCoy C A, Marshall M C, Polsin D N, et al. Hugoniot, sound velocity, and shock temperature of MgO to 2300 GPa[J]. Physical Review B, 100, 014106(2019).
[54] Roycroft R, Bowers B, Smith H, et al. Streaked optical pyrometer for proton-driven isochoric heating experiments of solid and foam targets[J]. AIP Advances, 10, 045220(2020).
[55] Gregor M C, Boni R, Sorce A, et al. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials[J]. Review of Scientific Instruments, 87, 114903(2016).
[56] Miller J E, Boehly T R, Melchior A, et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA[J]. Review of Scientific Instruments, 78, 034903(2007).
[57] Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 102, 075503(2009).
[58] Yoo C S, Holmes N C, Ross M, et al. Shock temperatures and melting of iron at Earth core conditions[J]. Physical Review Letters, 70, 3931-3934(1993).
[59] Li Jun, Wu Qiang, Li Jiabo, et al. Shock melting curve of iron: a consensus on the temperature at the Earth's inner core boundary[J]. Geophysical Research Letters, 47, e2020GL087758(2020).
[60] Krygier A, Coppari F, Kemp G E, et al. Developing a high-flux, high-energy continuum backlighter for extended X-ray absorption fine structure measurements at the National Ignition Facility[J]. Review of Scientific Instruments, 89, 10F114(2018).
[61] Krygier A, Kemp G E, Coppari F, et al. Optimized continuum X-ray emission from laser-generated plasma[J]. Applied Physics Letters, 117, 251106(2020).
[62] Albert F, Lemos N, Shaw J L, et al. Betatron X-ray radiation in the self-modulated laser wakefield acceleration regime: prospects for a novel probe at large scale laser facilities[J]. Nuclear Fusion, 59, 032003(2019).
[63] Stoupin S, Thorn D B, Ose N, et al. The multi-optics high-resolution absorption X-ray spectrometer (HiRAXS) for studies of materials under extreme conditions[J]. Review of Scientific Instruments, 92, 053102(2021).
[64] Milathianaki D, Boutet S, Williams G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 342, 220-223(2013).
[65] Wehrenberg C E, Mcgonegle D, Bolme C, et al.
[66] Lazicki A, McGonegle D, Rygg J R, et al. Metastability of diamond ramp-compressed to 2 terapascals[J]. Nature, 589, 532-535(2021).
[67] Briggs R, Coppari F, Gorman M G, et al. Measurement of body-centered cubic gold and melting under shock compression[J]. Physical Review Letters, 123, 045701(2019).
[68] Fratanduono D E, Smith R F, Ali S J, et al. Probing the solid phase of noble metal copper at terapascal conditions[J]. Physical Review Letters, 124, 015701(2020).
[69] Millot M, Coppari F, Rygg J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice[J]. Nature, 569, 251-255(2019).
[70] Wang Jue, Coppari F, Smith R F, et al. X-ray diffraction of molybdenum under ramp compression to 1 TPa[J]. Physical Review B, 94, 104102(2016).
[71] Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the
[73] Suggit M, Kimminau G, Hawreliak J, et al. Nanosecond X-ray Laue diffraction apparatus suitable for laser shock compression experiments[J]. Review of Scientific Instruments, 81, 083902(2010).
[74] Comley A J, Maddox B R, Rudd R E, et al. Strength of shock-loaded single-crystal tantalum [100] determined using
[75] Suggit M J, Higginbotham A, Hawreliak J A, et al. Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper[J]. Nature Communications, 3, 1224(2012).
[76] Cerantola V, Rosa A D, Konôpková Z, et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers[J]. Journal of Physics:Condensed Matter, 33, 274003(2021).
[77] Shen Guoyin, Wang Yanbin, Dewaele A, et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020)[J]. High Pressure Research, 40, 299-314(2020).
[78] Celliers P M, Millot M, Brygoo S, et al. Insulator-metal transition in dense fluid deuterium[J]. Science, 361, 677-682(2018).
[79] Desjarlais M P, Knudson M D, Redmer R. Comment on “Insulator-metal transition in dense fluid deuterium”[J]. Science, 363, eaaw0969(2019).
[80] Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J]. Science, 348, 1455-1460(2015).
[81] Stevenson D J. Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures[J]. Physical Review B, 12, 3999-4007(1975).
[82] Mankovich C R, Fortney J J. Evidence for a dichotomy in the interior structures of Jupiter and Saturn from helium phase separation[J]. The Astrophysical Journal, 889, 51(2020).
[83] Schöttler M, Redmer R.
[84] Morales M A, Hamel S, Caspersen K, et al. Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors[J]. Physical Review B, 87, 174105(2013).
[85] Li Liming, Jiang Xun, West R A, et al. Less absorbed solar energy and more internal heat for Jupiter[J]. Nature Communications, 9, 3709(2018).
[86] Liu Shangfei, Hori Y, Müller S, et al. The formation of Jupiter’s diluted core by a giant impact[J]. Nature, 572, 355-357(2019).
[87] Nettelmann N, Helled R, Fortney J J, et al. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data[J]. Planetary and Space Science, 77, 143-151(2013).
[88] Stevenson D J. Formation of the giant planets[J]. Planetary and Space Science, 30, 755-764(1982).
[89] Cavazzoni C, Chiarotti G L, Scandolo S, et al. Superionic and metallic states of water and ammonia at giant planet conditions[J]. Science, 283, 44-46(1999).
[90] Umemoto K, Wentzcovitch R M, Allen P B. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets[J]. Science, 311, 983-986(2006).
[91] Mazevet S, Tsuchiya T, Taniuchi T, et al. Melting and metallization of silica in the cores of gas giants, ice giants, and super Earths[J]. Physical Review B, 92, 014105(2015).
[92] Sugimura E, Komabayashi T, Ohta K, et al. Experimental evidence of superionic conduction in H2O ice[J]. The Journal of Chemical Physics, 137, 194505(2012).
[93] Demontis P, LeSar R, Klein M L. New high-pressure phases of ice[J]. Physical Review Letters, 60, 2284-2287(1988).
[94] Knudson M D, Desjarlais M P, Lemke R W, et al. Probing the interiors of the ice giants: shock compression of water to 700 GPa and 3.8 g/cm3[J]. Physical Review Letters, 108, 091102(2012).
[95] Celliers P M, Collins G W, Hicks D G, et al. Electronic conduction in shock-compressed water[J]. Physics of Plasmas, 11, L41-L44(2004).
[96] Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 511, 330-333(2014).
[97] Hicks D G, Boehly T R, Celliers P M, et al. High-precision measurements of the diamond Hugoniot in and above the melt region[J]. Physical Review B, 78, 174102(2008).
[98] Gregor M C, Fratanduono D E, McCoy C A, et al. Hugoniot and release measurements in diamond shocked up to 26 Mbar[J]. Physical Review B, 95, 144114(2017).
[99] Wang Peng, Zhang Chen, Jiang Shaoen, et al. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 6, 035902(2021).
[100] McWilliams R S, Spaulding D K, Eggert J H, et al. Phase transformations and metallization of magnesium oxide at high pressure and temperature[J]. Science, 338, 1330-1333(2012).
[101] Coppari F, Smith R F, Eggert J H, et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures[J]. Nature Geoscience, 6, 926-929(2013).
[102] Root S, Townsend J P, Knudson M D. Shock compression of fused silica: an impedance matching standard[J]. Journal of Applied Physics, 126, 165901(2019).
[103] Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 12, 082702(2005).
[104] Knudson M D, Desjarlais M P. Adiabatic release measurements in
[105] Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: redefining a pressure standard[J]. Physical Review Letters, 103, 225501(2009).
[106] Fratanduono D E, Millot M, Kraus R G, et al. Thermodynamic properties of MgSiO3 at super-Earth mantle conditions[J]. Physical Review B, 97, 214105(2018).
[107] Sekine T, Ozaki N, Miyanishi K, et al. Shock compression response of forsterite above 250 GPa[J]. Science Advances, 2, e1600157(2016).
[108] Bolis R M, Morard G, Vinci T, et al. Decaying shock studies of phase transitions in MgO-SiO2 systems: implications for the super-Earths' interiors[J]. Geophysical Research Letters, 43, 9475-9483(2016).
[109] [109] Fbes J W. Shock wave compression of condensed matter: a primer[M]. Berlin, Heidelberg: Springer, 2012.
[110] Duffy T, Madhusudhan N, Lee K K M. Mineralogy of super-earth planets[J]. Treatise on Geophysics, 2, 149-178(2015).
[111] Duffy T S, Ahrens T J. Sound velocities at high pressure and temperature and their geophysical implications[J]. Journal of Geophysical Research: Solid Earth, 97, 4503-4520(1992).
[112] Duffy T S, Vos W L, Zha Changsheng, et al. Sound velocities in dense hydrogen and the interior of Jupiter[J]. Science, 263, 1590-1593(1994).
[113] Hu Jianbo, Zhou Xianming, Dai Chengda, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements[J]. Journal of Applied Physics, 104, 083520(2008).
[114] Nissim N, Eliezer S, Werdiger M. The sound velocity throughout the
[115] Ohtani E, Mibe K, Sakamaki T, et al. Sound velocity measurement by inelastic X-ray scattering at high pressure and temperature by resistive heating diamond anvil cell[J]. Russian Geology and Geophysics, 56, 190-195(2015).
[116] McCoy C A, Knudson M D, Root S. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures[J]. Physical Review B, 96, 174109(2017).
[117] Li Mu, Zhang Shuai, Zhang Hongping, et al. Continuous sound velocity measurements along the shock hugoniot curve of quartz[J]. Physical Review Letters, 120, 215703(2018).
[118] Fratanduono D E, Munro D H, Celliers P M, et al. Hugoniot experiments with unsteady waves[J]. Journal of Applied Physics, 116, 033517(2014).
[119] McCoy C A, Gregor M C, Polsin D N, et al. Measurements of the sound velocity of shock-compressed liquid silica to 1100 GPa[J]. Journal of Applied Physics, 120, 235901(2016).
[120] Fratanduono D E, Celliers P M, Braun D G, et al. Equation of state, adiabatic sound speed, and Gruneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa[J]. Physical Review B, 94, 184107(2016).
[121] Henderson B J, Marshall M C, Boehly T R, et al. Shock-compressed silicon: hugoniot and sound speed up to 2100 GPa[J]. Physical Review B, 103, 094115(2021).
Get Citation
Copy Citation Text
Mu Li, Hongping Zhang, Shi Chen, Peidong Tao, Hang Zhu, Cangtao Zhou, Jianheng Zhao, Chengwei Sun. Laser driven dynamic compression of materials[J]. High Power Laser and Particle Beams, 2022, 34(1): 011001
Category: Thermal and Mechanical Effects of Laser
Received: Aug. 18, 2021
Accepted: --
Published Online: Jan. 25, 2022
The Author Email: