Acta Photonica Sinica, Volume. 53, Issue 10, 1012004(2024)

Graph-optimization-based Vision/Inertial/UWB Fusion Positioning Algorithm for Indoor Environments

Bo GAO* and Baowang LIAN
Author Affiliations
  • School of Electronic Information, Northwestern Polytechnical University, Xi'an 710072, China
  • show less
    Figures & Tables(13)
    Process of Vision/Inertial/UWB fusion positioning algorithm optimized based on factor graph
    Global factor diagram of VIUFPA algorithm
    Comparison of UWB ranging values before and after filtering
    Trajectory estimation results generated by each sequence of PL-VIO algorithm
    Trajectory estimation results generated by each sequence of VIUFPA algorithm
    Overall distribution of absolute pose errors of each sequence
    Experimental platform and scene configuration
    Comparison of experimental results of the four methods in the office scene
    Test configuration and preset trajectory of underground parking
    Comparison of experimental results of the four methods in the underground parking scene
    • Table 1. Location RMSE errors(m)generated by four methods on the EuRoC dataset

      View table
      View in Article

      Table 1. Location RMSE errors(m)generated by four methods on the EuRoC dataset

      SequenceVIUFPAPL-VIOVINS-MonoRKF-UWB
      MH_01_easy0.080.140.160.16
      MH_02_easy0.070.150.190.16
      MH_03_medium0.070.190.200.17
      MH_04_difficult0.100.330.360.18
      MH_05_difficult0.130.250.300.17
      V1_01_easy0.040.070.090.16
      V1_02_medium0.060.080.110.18
      V1_03_difficult0.060.140.200.17
      V2_01_easy0.050.070.090.16
      V2_02_medium0.050.120.160.16
      V2_03_difficult0.100.240.280.17
    • Table 2. Positioning error data statistics

      View table
      View in Article

      Table 2. Positioning error data statistics

      AlgorithmMean/mMaximum error/m
      LS0.130.72
      RKF-UWB0.080.37
      VINS-Mono0.130.40
      PL-VIO0.120.36
      VIUFPA0.070.25
    • Table 3. Positioning error data statistics

      View table
      View in Article

      Table 3. Positioning error data statistics

      AlgorithmMean/mMaximum error/m
      LS0.181.51
      RKF-UWB0.140.64
      VINS-Mono0.431.38
      PL-VIO0.391.02
      VIUFPA0.120.39
    Tools

    Get Citation

    Copy Citation Text

    Bo GAO, Baowang LIAN. Graph-optimization-based Vision/Inertial/UWB Fusion Positioning Algorithm for Indoor Environments[J]. Acta Photonica Sinica, 2024, 53(10): 1012004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Mar. 29, 2024

    Accepted: May. 8, 2024

    Published Online: Dec. 5, 2024

    The Author Email: GAO Bo (xjtuboo@mail.nwpu.edu.cn)

    DOI:10.3788/gzxb20245310.1012004

    Topics