Journal of Radiation Research and Radiation Processing, Volume. 42, Issue 6, 060203(2024)

Radiation preparation of MXene/graphene oxide composite aerogel for supercapacitor

Yang HU... Xuyan WEI, Jiuqiang LI, Jing PENG* and Maolin ZHAI* |Show fewer author(s)
Author Affiliations
  • Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science,College of Chemistry and Molecular Engineering,Beijing National Laboratory for Molecular Sciences,Peking University,Beijing 100871,China
  • show less
    References(41)

    [1] A VahidMohammadi, J Rosen, Y Gogotsi. The world of two-dimensional carbides and nitrides (MXenes). Science, 372, eabf1581(2021).

    [2] X L Li, Z D Huang, C E Shuck et al. MXene chemistry,electrochemistry and energy storage applications. Nature Reviews Chemistry, 6, 389-404(2022).

    [3] L Y Liu, M Orbay, S Luo et al. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano, 16, 111-118(2022).

    [4] J Li, X T Yuan, C Lin et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials, 7, 1602725(2017).

    [5] J T Lee, B C Wyatt, G A Davis et al. Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano, 15, 19600-19612(2021).

    [6] J Yan, T Z Zhou, X Y Yang et al. Strong and tough MXene bridging-induced conductive nacre. Angewandte Chemie International Edition, 63, e202405228(2024).

    [7] M Safarkhani, B F Far, Y Huh et al. Thermally conductive MXene. ACS Biomaterials Science & Engineering, 9, 6516-6530(2023).

    [8] S P Zhang, F M Guo, X Gao et al. High-strength,antiswelling directional layered PVA/MXene hydrogel for wearable devices and underwater sensing. Advanced Science, 11, 2405880(2024).

    [9] W C Ouyang, L Mei, Q Liu et al. Ultrathin-flexible multifunctional MXene composite hydrogels with good mechanical properties-high strain sensitivity and ultra-broadband EMI shielding performances. Chemical Engineering Journal, 494, 153068(2024).

    [10] Z Lu, Y Wu, L Ding et al. A lamellar MXene (Ti3C2tx)/PSS composite membrane for fast and selective lithium-ion separation. Angewandte Chemie (International Ed.), 60, 22265-22269(2021).

    [11] Y Z Zhang, J K El-Demellawi, Q Jiang et al. MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 49, 7229-7251(2020).

    [12] S Zhao, H B Zhang, J Q Luo et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano, 12, 11193-11202(2018).

    [13] L Li, M Y Zhang, X T Zhang et al. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources, 364, 234-241(2017).

    [14] T X Shang, Z F Lin, C S Qi et al. 3D macroscopic architectures from self-assembled MXene hydrogels. Advanced Functional Materials, 29, 1903960(2019).

    [15] Y Yue, N S Liu, Y N Ma et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano, 12, 4224-4232(2018).

    [16] S Le Caër. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water, 3, 235-253(2011).

    [17] T R Lin, S X Li, Y Hu et al. Ultrastretchable and adhesive agarose/ Ti3C2Tx-crosslinked-polyacrylamide double-network hydrogel for strain sensor. Carbohydrate Polymers, 290, 119506(2022).

    [18] Y W Zhang, H L Ma, Q L Zhang et al. Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide. Journal of Materials Chemistry, 22, 13064-13069(2012).

    [19] W K Wang, Y H Wu, Z W Jiang et al. Formation mechanism of 3D macroporous graphene aerogel in alcohol-water media under gamma-ray radiation. Applied Surface Science, 427, 1144-1151(2018).

    [20] J Yan, C E Ren, K Maleski et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 27, 1701264(2017).

    [21] K N Kudin, B Ozbas, H C Schniepp et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8, 36-41(2008).

    [22] R B Rakhi, B Ahmed, M N Hedhili et al. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chemistry of Materials, 27, 5314-5323(2015).

    [23] L B Zhang, G Y Chen, M N Hedhili et al. Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale, 4, 7038-7045(2012).

    [24] F Dong, H Q Wang, Z B Wu. One-step“green”synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. The Journal of Physical Chemistry C, 113, 16717-16723(2009).

    [25] S Abou Zeid, S Bencherif, R Ghasemi et al. Radiation induced reduction of graphene oxide: a dose effect study. New Journal of Chemistry, 48, 4749-4764(2024).

    [26] V H Pham, T V Cuong, S H Hur et al. Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. Journal of Materials Chemistry, 21, 3371-3377(2011).

    [27] A Sarycheva, Y Gogotsi. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chemistry of Materials, 32, 3480-3488(2020).

    [28] C J Zhao, Q Wang, H Zhang et al. Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Applied Materials & Interfaces, 8, 15661-15667(2016).

    [29] M Ghidiu, M R Lukatskaya, M Q Zhao et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78-81(2014).

    [30] S Stankovich, D A Dikin, R D Piner et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558-1565(2007).

    [31] Z M Fan, Y S Wang, Z M Xie et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Advanced Science, 5, 1800750(2018).

    [32] F Farivar, P L Yap, K Hassan et al. Unlocking thermogravimetric analysis (TGA) in the fight against“Fake graphene”materials. Carbon, 179, 505-513(2021).

    [33] Y X Xu, H Bai, G W Lu et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130, 5856-5857(2008).

    [34] Y L Shao, M F El-Kady, J Y Sun et al. Design and mechanisms of asymmetric supercapacitors. Chemical Reviews, 118, 9233-9280(2018).

    [35] X M Fan, C Yu, J Yang et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Advanced Energy Materials, 5, 1401761(2015).

    [36] T R Lin, M N Shi, F R Huang et al. One-pot synthesis of a double-network hydrogel electrolyte with extraordinarily excellent mechanical properties for a highly compressible and bendable flexible supercapacitor. ACS Applied Materials & Interfaces, 10, 29684-29693(2018).

    [37] Y F Yu, H P Zhang, Y Q Xie et al. Vertically aligned graphene-MXene nanosheets based electrodes for high electrochemical performance asymmetric supercapacitor. Chemical Engineering Journal, 482, 149063(2024).

    [38] Z J Wang, X L Yang, G Wang et al. MXene enhanced reduced graphene oxide aerogel for high-performance supercapacitors. The Journal of Chemical Physics, 161, 074704(2024).

    [39] Z Qin, Z W Wang, D Li et al. Nanofiber-reinforced MXene/rGO composite aerogel for a high-performance piezoresistive sensor and an all-solid-state supercapacitor electrode material. ACS Applied Materials & Interfaces, 16, 32554-32565(2024).

    [40] S D Sutar, I Patil, H Parse et al. Ti3C2Tx/TiO2@GO* heterostructure: a strategy to design high-specific capacitive electrodes for a solid-state supercapacitor. ACS Applied Energy Materials, 7, 4353-4364(2024).

    [41] X Y Fu, R Y Shu, C J Ma et al. Laser-induced fabrication of electrodes on graphene oxide—MXene composites for planar supercapacitors. ACS Applied Nano Materials, 6, 4567-4572(2023).

    Tools

    Get Citation

    Copy Citation Text

    Yang HU, Xuyan WEI, Jiuqiang LI, Jing PENG, Maolin ZHAI. Radiation preparation of MXene/graphene oxide composite aerogel for supercapacitor[J]. Journal of Radiation Research and Radiation Processing, 2024, 42(6): 060203

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RADIATION CHEMISTRY

    Received: Oct. 22, 2024

    Accepted: Nov. 29, 2024

    Published Online: Jan. 15, 2025

    The Author Email: PENG Jing (彭静), ZHAI Maolin (翟茂林)

    DOI:10.11889/j.1000-3436.2024-0087

    Topics