Chinese Journal of Quantum Electronics, Volume. 39, Issue 6, 927(2022)

Review of co-phasing error detection for synthetic aperture imaging system based on deep learning

Huimin MA1、*, Lei TAN1, Jinghui ZHANG2, Pengfei ZHANG3, Xiaomei NING1, Haiqiu LIU1, and Yanwei GAO1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(66)

    [1] [1] Fan W Q, Wang Z C, Chen B G, et al. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208.

    [4] [4] Dong L. Multi-spectral Co-phasing Error Detection in Optical Synthetic Aperture Telescopes[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of Sciences), 2019.

    [5] [5] Chanan G, Troy M, Dekens F, et al. Phasing the mirror segments of the Keck telescopes: The broadband phasing algorithm[J]. Applied Optics, 1998, 37(1): 140-155.

    [6] [6] Chanan G, Ohara C, Troy M. Phasing the mirror segments of the Keck telescopes II: The narrow-band phasing algorithm[J]. Applied Optics, 2000, 39(25): 4706-4714.

    [7] [7] Chanan G, Troy M, Raouf N. Phasing the segments of the Keck and Thirty Meter Telescopes via the narrowband phasing algorithm: Chromatic effects[C]. Conference on Ground-Based and Airborne Telescopes VI(SPIE), 2016, 9906: 2234-2245.

    [8] [8] Li B, Yu W H, Chen M, et al. Co-phasing experiment of a segmented mirror using a combined broadband and two-wavelength algorithm[J]. Applied Optics, 2017, 56(32): 8871-8879.

    [9] [9] Chanan G, Troy M. Chromatic effects in narrowband phasing of the Keck telescope segments: Theory and numerical simulations[C]. Conference on Ground-based and Airborne Telescopes VII(SPIE), 2018, 10700: 107001E.

    [10] [10] Chanan G, Pinto A. Efficient method for the reduction of large piston errors in segmented-mirror telescopes[C]. Proceedings of Second Backaskog Workshop on Extremely Large Telescopes, International Society for Optics and Photonics, 2004.

    [11] [11] Roddier F. Curvature sensing and compensation: A new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223-1225.

    [12] [12] Meng Y H. Method of Segmented Mirror Co-phasing Based on Dispersed Fringe Sensing Technology[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2017.

    [13] [13] Zhang C Y. Improving the Performance of Co-phasing Error Detection Based on Dispersed Fringe Sensor[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2018.

    [14] [14] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-250.

    [15] [15] Yue D. Co-phasing of the Segmented Telescope and Image Retrieval Based on Phase Diversity Algorithm[D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2016.

    [16] [16] Luo Q. Studies on the Phase Diversity Wavefront Sensor and Co-phasing Measurement for Segmented Mirrors[D]. Changsha: National University of Defense Technology, 2012.

    [17] [17] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 1982, 21(5): 829-832.

    [18] [18] Yang K Y, Xie Z L, Ma H T, et al. Piston error correction of sparse aperture systems using the metaheuristic stochastic parallel gradient descent algorithm[J]. Applied Optics, 2020, 59(22): 6505-6516.

    [19] [19] He X J. Study on Co-phase Error Correction of Optical Multi-aperture Imaging System Based on Stochastic Parallel Gradient Decent Algorithm[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of Sciences), 2017.

    [20] [20] Xie Z L. Study on Key Technology of Phased Telescope Array Imaging[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of Sciences), 2018.

    [21] [21] Yang K Y. Piston Error Correction of Multi Aperture Systems Using Meta-heuristic Stochastic Parallel Gradient Descent Algorithm[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of Sciences), 2021.

    [22] [22] Paykin I, Yacobi L, Adler J, et al. Phasing a segmented telescope[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(2): 023302.

    [23] [23] Ge Y J. Research on Phase Diversity Co-phasing Method Based on an Improved Particle Swarm Algorithm[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of Sciences), 2021.

    [24] [24] Angel J R P, Wizinowich P, Lloyd-Hart M, et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 1990, 348(6298): 221-224.

    [25] [25] Sandler D G, Barrett T K, Palmer D A, et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 1991, 351(6324): 300-302.

    [26] [26] Barrett T K, Sandler D G. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images[J]. Applied Optics, 1993, 32(10): 1720-1727.

    [27] [27] Ryan P T, Fugate R Q, Angel J R, et al. Halo characteristics and their influence on companion searches at the starfire optical range[J]. Applied Optics, 1998, 37(30): 7035-7043.

    [28] [28] Wintoft P, Dai G M. Neural network for modal compensation of atmospheric turbulence[C]. Proceedings of SPIE, 1994, 2302: 103-109.

    [29] [29] Lloyd-Hart M, McGuire P. Spatio-temporal prediction for adaptive optics wavefront reconstructors[J]. Medicine & Health Rhode Island, 2000, 90(3): 72-75.

    [30] [30] Montera D A, Welsh B M, Roggemann M C, et al. Processing wave-front-sensor slope measurements using artificial neural networks[J]. Applied Optics, 1996, 35(21): 4238-4251.

    [31] [31] Mello A T, Kanaan A, Guzman D, et al. Artificial neural networks for centroiding elongated spots in Shack-Hartmann wavefront sensors[J]. Monthly Notices of the Royal Astronomical Society, 2014, 440(3): 2781-2790.

    [32] [32] Weddell S J, Webb R Y. Dynamic artificial neural networks for centroid prediction in astronomy[C]. Proceedings of the Sixth International Conference on Hybrid Intelligent Systems, 2006.

    [33] [33] Osborn J, de Cos Juez F J, Guzman D, et al. Using artificial neural networks for open-loop tomography[J]. Optics Express, 2012, 20(3): 2420-2434.

    [34] [34] Osborn J, Guzman D, de Cos Juez F J, et al. Open-loop tomography with artificial neural networks on CANARY: On-sky results[J]. Monthly Notices of the Royal Astronomical Society, 2014, 441(3): 2508-2514.

    [35] [35] González-Gutiérrez C, Santos J D, Martínez-Zarzuela M, et al. Comparative study of neural network frameworks for the next generation of adaptive optics systems[J]. Sensors (Basel, Switzerland), 2017, 17(6): 1263.

    [36] [36] Ma H M, Jiao J, Qiao Y, et al. Wavefront restoration method based on light intensity image deep learning[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081103.

    [37] [37] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.

    [38] [38] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]. IEEE International Conference on Neural Information Processing Systems, 2012, 1(25): 1097-1105.

    [39] [39] Zhao S J, Li Y J, Fu T F, et al. Deep Learning[M]. 2017, Beijing: People Post Press.

    [40] [40] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

    [41] [41] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[OL]. 2015, arXiv:1409.1556, https://arxiv.org/abs/1409.1556.

    [42] [42] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.

    [43] [43] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.

    [44] [44] Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2013: 6645-6649.

    [45] [45] Liang M, Hu X L. Recurrent convolutional neural network for object recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3367-3375.

    [46] [46] Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231.

    [47] [47] Lohani S, Glasser R T. Turbulence correction with artificial neural networks[J]. Optics Letters, 2018, 43(11): 2611-2614.

    [48] [48] Lohani S, Knutson E M, O’Donnell M, et al. On the use of deep neural networks in optical communications[J]. Applied Optics, 2018, 57(15): 4180-4190.

    [49] [49] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 2018, 43(6): 1235-1238.

    [50] [50] Ma H M, Liu H Q, Qiao Y, et al. Numerical study of adaptive optics compensation based on Convolutional Neural Networks[J]. Optics Communications, 2019, 433: 283-289.

    [51] [51] Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 2019, 27(1): 240-251.

    [52] [52] Zhang Z G, Yang H Z, Liu J L, et al. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 53-68.

    [53] [53] Li Z Q, Li X Y, Gao Z Y, et al. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 5-17.

    [54] [54] Guerra-Ramos D, Díaz-García L, Trujillo-Sevilla J, et al. Piston alignment of segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2018, 43(17): 4264-4267.

    [55] [55] Guerra-Ramos D, Trujillo-Sevilla J, Rodríguez-Ramos J M. Global piston restoration of segmented mirrors with recurrent neural networks[J]. OSA Continuum, 2020, 3(5): 1355-1363.

    [56] [56] Guerra-Ramos D, Trujillo-Sevilla J, Rodríguez-Ramos J M. Towards piston fine tuning of segmented mirrors through reinforcement learning[J]. Applied Sciences, 2020, 10(9): 3207.

    [57] [57] Li D Q, Xu S Y, Wang D, et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2019, 44(5): 1170-1173.

    [58] [58] Ma X F, Xie Z L, Ma H T, et al. Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. Optics Express, 2019, 27(11): 16058-16070.

    [59] [59] Ma X F, Xie Z L, Ma H T, et al. Piston sensing for sparse aperture systems with broadband extended objects via a single convolutional neural network[J]. Optics and Lasers in Engineering, 2020, 128: 106005.

    [60] [60] Hui M, Li W Q, Liu M, et al. Object-independent piston diagnosing approach for segmented optical mirrors via deep convolutional neural network[J]. Applied Optics, 2020, 59(3): 771-778.

    [61] [61] Hui M, Li W Q, Wu Y, et al. Breadth-first piston diagnosing approach for segmented mirrors through supervised learning of multiple-wavelength images[J]. Applied Optics, 2020, 59(32): 9963-9970.

    [62] [62] Tang J, Ren Z B, Wu X Y, et al. Object-independent tilt detection for optical sparse aperture system with large-scale piston error via deep convolution neural network[J]. Optics Express, 2021, 29(25): 41670-41684.

    [63] [63] Wang P F, Zhao H, Xie X P, et al. Multichannel left-subtract-right feature vector piston error detection method based on a convolutional neural network[J]. Optics Express, 2021, 29(14): 21320-21335.

    [64] [64] Wang P F, Zhao H, Xie X P, et al. Large-range piston error detection technology based on dispersed fringe sensor[C]. th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirror and Telescopes, 2021.

    [65] [65] Wang Y R, Jiang F Y, Ju G H, et al. Deep learning wavefront sensing for fine phasing of segmented mirrors[J]. Optics Express, 2021, 29(16): 25960-25978.

    [66] [66] Zhao W R, Wang H, Zhang L, et al. Piston detection in segmented telescopes via multiple neural networks coordination of feature-enhanced images[J]. Optics Communications, 2022, 507: 127617.

    Tools

    Get Citation

    Copy Citation Text

    MA Huimin, TAN Lei, ZHANG Jinghui, ZHANG Pengfei, NING Xiaomei, LIU Haiqiu, GAO Yanwei. Review of co-phasing error detection for synthetic aperture imaging system based on deep learning[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 927

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 3, 2022

    Accepted: --

    Published Online: Mar. 5, 2023

    The Author Email: Huimin MA (huiminma@ahau.edu.cn)

    DOI:10.3969/j.issn.1007-5461.2022.06.007

    Topics