Chinese Journal of Lasers, Volume. 51, Issue 12, 1202102(2024)

Solidification Microstructure Volume of Fluid Phase Field Model for Laser Welding Nickel‑Based Alloys

Yichen Li, Lei Wang*, He Li, Yong Peng, Runhuan Cai, and Kehong Wang
Author Affiliations
  • School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • show less
    References(23)

    [1] Zhang J, Zhang Q L, Yao J H et al. Optimization of laser cladding process and analysis of interface microstructure and properties of IN718 alloy[J]. Chinese Journal of Lasers, 49, 1602021(2022).

    [2] Wang Y, Huang Y L, Yang Y Q. Numerical simulation on coaxial powder feeding laser directional energy deposition of IN718[J]. Chinese Journal of Lasers, 48, 0602115(2021).

    [3] Li W, Yang L J, Huang Y M et al. Study on penetration characteristics of plasma electric signal in laser welding of TC4 titanium alloy[J]. Chinese Journal of Lasers, 49, 2202018(2022).

    [4] Huang J S, Cai C, Liu Z J et al. Microstructure and mechanical properties of laser welded Inconel690 nickel-based alloy/SUS304 stainless steel joints[J]. Acta Optica Sinica, 43, 1014001(2023).

    [5] Asta M, Beckermann C, Karma A et al. Solidification microstructures and solid-state parallels: recent developments, future directions[J]. Acta Materialia, 57, 941-971(2009).

    [6] Wang L. Study on microstructure evolution of molten pool in laser welding of 2A14 aluminum alloy by phase field method[D](2018).

    [7] Liu Y. Modeling and simulation of microstructure in solidification process of Al-Li alloy laser welding pool[D](2018).

    [8] Yin H, Felicelli S D. Dendrite growth simulation during solidification in the LENS process[J]. Acta Materialia, 58, 1455-1465(2010).

    [9] Yu F Y, Wei Y H, Liu X B. The evolution of polycrystalline solidification in the entire weld: a phase-field investigation[J]. International Journal of Heat and Mass Transfer, 142, 118450(2019).

    [10] Wang L, Wei Y H, Chen J C et al. Macro-micro modeling and simulation on columnar grains growth in the laser welding pool of aluminum alloy[J]. International Journal of Heat and Mass Transfer, 123, 826-838(2018).

    [11] Radhakrishnan B, Gorti S B, Turner J A et al. Phase field simulations of microstructure evolution in IN718 using a surrogate Ni–Fe–Nb alloy during laser powder bed fusion[J]. Metals, 9, 14(2018).

    [12] Mi G Y, Xiong L D, Wang C M et al. Two-dimensional phase-field simulations of competitive dendritic growth during laser welding[J]. Materials & Design, 181, 107980(2019).

    [13] Geng S N. Multi-scale simulation study on solidification structure evolution of molten pool in laser welding of aluminum alloy sheet[D](2020).

    [14] Chang B H, Allen C, Blackburn J et al. Fluid flow characteristics and porosity behavior in full penetration laser welding of a titanium alloy[J]. Metallurgical and Materials Transactions B, 46, 906-918(2015).

    [15] Pang S Y. Study on transient keyhole and moving molten pool behavior and related mechanism in laser deep penetration welding[D](2011).

    [16] Xu G X. Numerical simulation of weld formation in laser +GMAW-P hybrid heat source welding[D](2009).

    [17] Zheng W J, Dong Z B, Wei Y H et al. Phase field investigation of dendrite growth in the welding pool of aluminum alloy 2A14 under transient conditions[J]. Computational Materials Science, 82, 525-530(2014).

    [18] Yu F Y. Simulation of microstructure evolution during solidification of molten pool in aluminum-copper alloy TIG welding by phase field method[D](2018).

    [19] Wang L, Li H, Song Y et al. Investigation of dendrite growth, Nb segregation during laser IN718 deposition via volume of fluid-phase field modeling[J]. Journal of Materials Research and Technology, 21, 404-415(2022).

    [20] Kurz W, Fisher D J. Dendrite growth at the limit of stability: tip radius and spacing[J]. Acta Metallurgica, 29, 11-20(1981).

    [21] Hunt J D, Lu S Z. Numerical modeling of cellular/dendritic array growth: spacing and structure predictions[J]. Metallurgical and Materials Transactions A, 27, 611-623(1996).

    [22] Maguire M C, Michael J R. Weldability of alloy 718, 625 and variants. Loria E A. Superalloys 718, 625, 706 and Various Derivatives (1994)(1994).

    [23] DuPont J N, Notis M R, Marder A R et al. Solidification of Nb-bearing superalloys: part I. reaction sequences[J]. Metallurgical and Materials Transactions A, 29, 2785-2796(1998).

    Tools

    Get Citation

    Copy Citation Text

    Yichen Li, Lei Wang, He Li, Yong Peng, Runhuan Cai, Kehong Wang. Solidification Microstructure Volume of Fluid Phase Field Model for Laser Welding Nickel‑Based Alloys[J]. Chinese Journal of Lasers, 2024, 51(12): 1202102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Forming Manufacturing

    Received: Jun. 12, 2023

    Accepted: Aug. 11, 2023

    Published Online: Jan. 29, 2024

    The Author Email: Wang Lei (wang1913@njust.edu.cn)

    DOI:10.3788/CJL230905

    Topics