Chinese Journal of Lasers, Volume. 51, Issue 12, 1202102(2024)
Solidification Microstructure Volume of Fluid Phase Field Model for Laser Welding Nickel‑Based Alloys
Fig. 1. Schematic of heat source model and grid model. (a) Schematic of heat source model; (b) grid model
Fig. 2. Experimental apparatus
Fig. 3. Temperature field simulation results. (a) Laser keyhole; (b) upper surface of the molten pool; (c) cross-section of the molten pool; (d) longitudinal cross-section of the molten pool
Fig. 4. History of the temperature of the extraction points
Fig. 5. Microstructure evolution process. (a) Planar crystal propulsion; (b) interface instability; (c) competitive growth; (d) stable growth
Fig. 6. Comparisons of primary dendrite arm spacing for simulated and experimental microstructures
Fig. 7. Parameters in different positions. (a) Extracted solidification parameters; (b) the primary dendrite arm spacing and cooling rate
Fig. 8. Comparison of simulated and experimental primary dendrite arm spacings
Fig. 9. Nb element distribution. (a) Distribution of Nb element along the dendrite growth direction; (b) distribution of Nb element perpendicular to the dendrite growth direction
Fig. 10. Comparison of experimental and solute field simulated results
Fig. 11. SEM and EDS analysis. (a) EDS result of Laves phase; (b) SEM image; (c) EDS result of the matrix
|
Get Citation
Copy Citation Text
Yichen Li, Lei Wang, He Li, Yong Peng, Runhuan Cai, Kehong Wang. Solidification Microstructure Volume of Fluid Phase Field Model for Laser Welding Nickel‑Based Alloys[J]. Chinese Journal of Lasers, 2024, 51(12): 1202102
Category: Laser Forming Manufacturing
Received: Jun. 12, 2023
Accepted: Aug. 11, 2023
Published Online: Jan. 29, 2024
The Author Email: Wang Lei (wang1913@njust.edu.cn)