Advanced Photonics
Co-Editors-in-Chief
Xiao-Cong (Larry) Yuan, Anatoly Zayats

The image illustrates a schematic of a silicon nonlocal high-contrast grating illuminated by a probe beam whose reflection is modulated by a higher frequency pump beam.

Xin Tong, Renjun Xu, Pengfei Xu, Zishuai Zeng, Shuxi Liu, and Daomu Zhao

Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments. The existing deep-learning methods for holographic imaging often depend solely on the specific condition based on the given data distributions, thus hindering their generalization across multiple scenes. One critical problem is how to guarantee the alignment between any given downstream tasks and pretrained models. We analyze the physical mechanism of image degradation caused by turbulence and innovatively propose a swin transformer-based method, termed train-with-coherence-swin (TWC-Swin) transformer, which uses spatial coherence (SC) as an adaptable physical prior information to precisely align image restoration tasks in the arbitrary turbulent scene. The light-processing system (LPR) we designed enables manipulation of SC and simulation of any turbulence. Qualitative and quantitative evaluations demonstrate that the TWC-Swin method presents superiority over traditional convolution frameworks and realizes image restoration under various turbulences, which suggests its robustness, powerful generalization capabilities, and adaptability to unknown environments. Our research reveals the significance of physical prior information in the optical intersection and provides an effective solution for model-to-tasks alignment schemes, which will help to unlock the full potential of deep learning for all-weather optical imaging across terrestrial, marine, and aerial domains.

Oct. 25, 2023
  • Vol. 5 Issue 6 066003 (2023)
  • Andrea Tognazzi, Paolo Franceschini, Olga Sergaeva, Luca Carletti, Ivano Alessandri, Giovanni Finco, Osamu Takayama, Radu Malureanu, Andrei V. Lavrinenko, Alfonso C. Cino, Domenico de Ceglia, and Costantino De Angelis

    Metasurfaces offer a unique playground to tailor the electromagnetic field at subwavelength scale to control polarization, wavefront, and nonlinear processes. Tunability of the optical response of these structures is challenging due to the nanoscale size of their constitutive elements. A long-sought solution to achieve tunability at the nanoscale is all-optical modulation by exploiting the ultrafast nonlinear response of materials. However, the nonlinear response of materials is inherently very weak, and, therefore, requires optical excitations with large values of fluence. We show that by properly tuning the equilibrium optical response of a nonlocal metasurface, it is possible to achieve sizable variation of the photoinduced out-of-equilibrium optical response on the picosecond timescale employing fluences smaller than 250 μJ / cm2, which is 1 order of magnitude lower than previous studies with comparable reflectivity variations in silicon platforms. Our results pave the way to fast devices with large modulation amplitude.

    Dec. 09, 2023
  • Vol. 5 Issue 6 066006 (2023)
  • Feng Li, Sergei V. Koniakhin, Anton V. Nalitov, Evgeniia Cherotchenko, Dmitry D. Solnyshkov, Guillaume Malpuech, Min Xiao, Yanpeng Zhang, and Zhaoyang Zhang

    Engineering of the orbital angular momentum (OAM) of light due to interaction with photonic lattices reveals rich physics and motivates potential applications. We report the experimental creation of regularly distributed quantized vortex arrays in momentum space by probing the honeycomb and hexagonal photonic lattices with a single focused Gaussian beam. For the honeycomb lattice, the vortices are associated with Dirac points. However, we show that the resulting spatial patterns of vortices are strongly defined by the symmetry of the wave packet evolving in the photonic lattices and not by their topological properties. Our findings reveal the underlying physics by connecting the symmetry and OAM conversion and provide a simple and efficient method to create regularly distributed multiple vortices from unstructured light.

    Dec. 18, 2023
  • Vol. 5 Issue 6 066007 (2023)
  • Margarita Khokhlova, Emilio Pisanty, and Amelle Zaïr

    The Nobel Prize in Physics 2023 was awarded to Pierre Agostini, Ferenc Krausz and Anne L’Huillier for “experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter.” We review the history of attosecond physics, recount the laureates’ achievements and their place within the field, discuss the breakthroughs made possible by the creation of attosecond pulses, and look to the future advances in attoscience.

    Nov. 06, 2023
  • Vol. 5 Issue 6 060501 (2023)
  • Guoqing Chang

    Professor Guoqing Chang (Chinese Academy of Sciences) interviewed Professor Din Ping Tsai (City University of Hong Kong) on behalf of Advanced Photonics.

    Nov. 21, 2023
  • Vol. 5 Issue 6 060502 (2023)
  • Hancong Li, Qiming Peng, Xiulai Xu, and Jianpu Wang

    The Nobel Prize in Chemistry 2023 was awarded to Moungi G. Bawendi, Alexei I. Ekimov, and Louis E. Brus for “the discovery and synthesis of quantum dots (QDs)”. Here we review the history of QDs, bridge the connection between colloidal QDs and epitaxial QDs, revisit the milestones of their applications in optoelectronics, and provide insights into the future advancements of QDs.

    Dec. 06, 2023
  • Vol. 5 Issue 6 060503 (2023)
  • Kirill Koshelev, Pavel Tonkaev, and Yuri Kivshar

    We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response. We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces, including surface plasmon resonances, Mie resonances, lattice-guided modes, and bound states in the continuum. We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.

    Nov. 08, 2023
  • Vol. 5 Issue 6 064001 (2023)
  • Jianpeng Ao, Xiaofeng Fang, Liyang Ma, Zhijie Liu, Simin Wu, Changfeng Wu, and Minbiao Ji

    Stimulated Raman scattering (SRS) microscopy has shown superior chemical resolution due to the much narrower vibrational spectral bandwidth than its fluorescence counterpart. However, breaking the diffraction-limited spatial resolution of SRS imaging is much more challenging because of the intrinsically weak scattering cross section and inert/stable nature of molecular bond vibrations. We report superresolution SRS (SR-SRS) nanoscopy based on reversible-switchable vibrational photochromic probes integrated with point spread function engineering strategy. By introducing a Gaussian-shaped ultraviolet excitation beam and a donut-shaped visible depletion beam in addition to the pump and Stokes beams, SR-SRS could reach sub-100 nm resolution on photoswitchable nanoparticles (NPs). Furthermore, NP-treated live cell imaging was demonstrated with resolution improvement by a factor of ∼4. Our proof-of-principle work provides the potential for SR vibrational imaging to assist research on complex biological systems.

    Sep. 30, 2023
  • Vol. 5 Issue 6 066001 (2023)
  • Jingya Xie, Jun Qian, Tengjiao Wang, Linjie Zhou, Xiaofei Zang, Lin Chen, Yiming Zhu, and Songlin Zhuang

    We propose a terahertz (THz) vortex emitter that utilizes a high-resistance silicon resonator to generate vortex beams with various topological charges. Addressing the challenge of double circular polarization superposition resulting from the high refractive index contrast, we regulate the transverse spin state through a newly designed second-order grating partially etched on the waveguide’s top side. The reflected wave can be received directly by a linearly polarized antenna, simplifying the process. Benefiting from the tuning feature, a joint detection method involving positive and negative topological charges identifies and detects rotational Doppler effects amid robust micro-Doppler interference signals. This emitter can be used for the rotational velocity measurement of an on-axis spinning object, achieving an impressive maximum speed error rate of ∼2 % . This approach holds promise for the future development of THz vortex beam applications in radar target detection and countermeasure systems, given its low cost and potential for mass production.

    Oct. 19, 2023
  • Vol. 5 Issue 6 066002 (2023)
  • Bingying Zhao, and Jerome Mertz

    Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image postprocessing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function. However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by postprocessing can also lead to negativities or fail to conserve local linearity between sample and image. We describe here a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish nearby fluorophores, even when these are separated by distances smaller than the conventional resolution limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging conditions.

    Oct. 27, 2023
  • Vol. 5 Issue 6 066004 (2023)
  • Shujun Liu, Ruitao Ma, Zejie Yu, Yaocheng Shi, and Daoxin Dai

    A silicon-based digitally tunable positive/negative dispersion controller (DC) is proposed and realized for the first time using the cascaded bidirectional chirped multimode waveguide gratings (CMWGs), achieving positive and negative dispersion by switching the light propagation direction. A 1 × 2 Mach–Zehnder switch (MZS) and a 2 × 1 MZS are placed before and after to route the light path for realizing positive/negative switching. The device has Q stages of identical bidirectional CMWGs with a binary sequence. Thus the digital tuning is convenient and scalable, and the total dispersion accumulated by all the stages can be tuned digitally from - ( 2Q - 1 ) D0 to ( 2Q - 1 ) D0 with a step of D0 by controlling the switching states of all 2 × 2 MZSs, where D0 is the dispersion provided by a single bidirectional CMWG unit. Finally, a digitally tunable positive/negative DC with Q = 4 is designed and fabricated. These CMWGs are designed with a 4-mm-long grating section, enabling the dispersion D0 of about 4.16 ps / nm in a 20-nm-wide bandwidth. The dispersion is tuned from -61.53 to 63.77 ps / nm by switching all MZSs appropriately, and the corresponding group delay is varied from -1021 to 1037 ps.

    Nov. 22, 2023
  • Vol. 5 Issue 6 066005 (2023)
  • Please enter the answer below before you can view the full text.
    9-3=
    Submit