Pulsed lasers operating in the near-infrared (NIR) region are of great importance in fields such as optical communications, imaging, and material processing[
Chinese Optics Letters, Volume. 20, Issue 5, 051601(2022)
VOx/NaVO3 nanocomposite as a novel saturable absorber for passive Q-switching operation
We report VO
1. Introduction
Pulsed lasers operating in the near-infrared (NIR) region are of great importance in fields such as optical communications, imaging, and material processing[
As a binary TMO, vanadium oxides (
Researchers have proposed the composite strategy to boost the nonlinear optical properties[
Sign up for Chinese Optics Letters TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
In this Letter, to study the nonlinear optical properties of the
2. Materials and Methods
We took
3. Experiment and Results
The morphology and structure of the
Figure 1.VOx/NaVO3 composite material characterization: (a) SEM; (b) O elemental mapping; (c) V elemental mapping; (d) Na elemental mapping; (e) HRTEM; (f) SAED pattern; (g) XRD pattern; and (h) Raman spectrum.
Subsequently, the nonlinear optical properties of
Figure 2.Nonlinear transmission of VOx/V2O3 nanocomposite versus (a) Z axis at 1.3 µm, (b) intensity at 1.3 µm, (c) Z axis at 2 µm, and (d) intensity at 2 µm.
Figure 3.Schematic setup for the Q-switching operations at 1.3 and 2 µm with VOx/NaVO3 saturable absorber (gain: NdVO4 for 1.3 µm and Tm:YLF for 2 µm, SA: VOx/NaVO3).
Then, we investigated the variation of the transmittance with the change of laser peak density. The fitting equation of experimental data is as follows[
Herein,
Table 1 summarizes the nonlinear optical parameters of composite materials at 1.3 and 2 µm. These parameters verified that
|
The excellent nonlinear optical absorption response of the
For the continuous-wave (CW) running at 1.3 µm without the saturable absorber inserted into the cavity, the output power increased almost linearly after the threshold. Under the maximum pump power of 3.43 W, the highest output power was 782 mW. Then, the prepared saturable absorber was inserted into the resonator, and the threshold power for the stable
Figure 4.Passive Q-switching operation at 1.3 µm with VOx/NaVO3 saturable absorber. (a) CW and Q-switched output power, (b) pulse duration and repetition rate, (c) pulse train, and (d) temporal pulse profile.
Then, we investigated the nonlinear saturable absorption properties of
Figure 5.Passively Q-switched Tm:YLF laser at ∼ 2 µm with VOx/NaVO3 saturable absorber. (a) CW and Q-switched output power, (b) pulse duration and repetition rate, (c) pulse train, and (d) temporal pulse profile.
Table 2 summarizes the passive
|
4. Conclusion
In summary, the
[1] K. Scholle, S. Lamrini, P. Koopmann, P. Fuhrberg. 2 µm laser sources and their possible applications. Frontiers in Guided Wave Optics and Optoelectronics, 471(2010).
[2] J. Yu, S. Kwon, Z. Petrášek, O. Park, S. Jun, K. Shin, M. Choi, Y. Park, K. Park, H. Na, N. Lee, D. Lee, J. Kim, P. Schwille, T. Hyeon. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater., 12, 359(2013).
[3] D. Teixidor, F. Orozco, T. Thepsonthi, J. Ciurana, C. Rodríguez, T. Özel. Effect of process parameters in nanosecond pulsed laser micromachining of PMMA-based microchannels at near-infrared and ultraviolet wavelengths. J. Adv. Manuf. Technol., 67, 1651(2012).
[4] L. Cao, W. Tang, S. Zhao, Y. Li, X. Zhang, N. Qi, D. Li. 2 µm passively Q-switched all-solid-state laser based on WSe2 saturable absorber. Opt. Laser Technol., 113, 72(2019).
[5] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh, D. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077(2009).
[6] B. Guo, X. Guo, L. Tang, W. Yang, Q. Chen, Z. Ren. Ultra-long-period grating-based multi-wavelength ultrafast fiber laser [Invited]. Chin. Opt. Lett., 19, 071405(2021).
[7] K. Wang, J. Wang, J. Fan, M. Lotya, A. O Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. Coleman, L. Zhang, W. Blau. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 7, 9260(2013).
[8] Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, D. Fan. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater., 6, 1701166(2018).
[9] P. Yin, X. Jiang, R. Huang, X. Wang, Y. Ge, C. Ma, H. Zhang. 2D materials for nonlinear photonics and electro-optical applications. Adv. Mater. Interfaces, 8, 2100367(2021).
[10] Z. Du, T. Zhang, Z. Xie, J. Ning, X. Lü, J. Xu, S. Zhu. Enhanced nonlinear optical response of layered WSe1.4Te0.6 alloy in 1 µm passively Q-switched laser. Chin. Opt. Lett., 17, 121404(2019).
[11] J. Wu, Y. Gao, X. Li, J. Long, H. Cui, Z. Luo, W. Xu, A. Luo. Q-switched mode-locked multimode fiber laser based on a graphene-deposited multimode microfiber. Chin. Opt. Lett., 19, 121402(2021).
[12] X. Ling, H. Wang, S. Huang, F. Xia, M. Dresselhaus. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA, 112, 4523(2015).
[13] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. Hor, R. Cava, M. Hasan. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys., 5, 398(2009).
[14] F. Wang, H. Chen, D. Lan, F. Zhang, Y. Sun, X. Zhang, S. Li, T. Cheng. Highly efficient and robust broadband nano-VO2(M) saturable absorber for nonlinear optics and ultrafast photonics. Adv. Opt. Mater., 9, 2100795(2021).
[15] M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263(2013).
[16] A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. Zhang, D. Akinwande. Buckled two-dimensional Xene sheets. Nat. Mater., 16, 163(2017).
[17] S. Butler, S. Hollen, L. Cao, Y. Cui, J. Gupta, H. Gutiérrez, T. Heinz, S. Hong, J. Huang, A. Ismach, E. Johnston-Halperin, M. Kuno, V. Plashnitsa, R. Robinson, R. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. Spencer, M. Terrones, W. Windl, J. Goldberger. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7, 2898(2013).
[18] C. Wu, F. Feng, Y. Xie. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev., 42, 5157(2013).
[19] M. Imada, A. Fujimori, Y. Tokura. Metal-insulator transitions. Rev. Mod. Phys., 70, 1039(1998).
[20] J. Muster, G. Kim, V. Krstić, J. Park, Y. Park, S. Roth, M. Burghard. Electrical transport through individual vanadium pentoxide nanowires. Adv. Mater., 12, 420(2000).
[21] Y. Lu, J. Wu, J. Liu, M. Lei, S. Tang, P. Lu, L. Yang, H. Yang, Q. Yang. Facile synthesis of Na0.33V2O5 nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium ion batteries. ACS Appl. Mater. Interfaces, 7, 17433(2015).
[22] Y. Xu, X. Han, L. Zheng, W. Yan, Y. Xie. Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires. J. Mater. Chem., 21, 14466(2011).
[23] L. Chen, H. Wu, H. Wang, L. Chen, X. Pu, Z. Chen. Tailoring NaVO3 as a novel stable cathode for lithium rechargeable batteries. Electrochim. Acta, 307, 224(2019).
[24] N. Hieu, D. Lichtman. Bandgap radiation induced photodesorption from V2O5 powder and vanadium oxide surfaces. J. Vac. Sci. Technol., 18, 49(1981).
[25] N. Szymanski, Z. Liu, T. Alderson, N. Podraza, P. Sarin, S. Khare. Electronic and optical properties of vanadium oxides from first principles. Comp. Mater. Sci., 146, 310(2018).
[26] A. Geim, I. Grigorieva. Van der Waals heterostructures. Nature, 499, 419(2013).
[27] K. Novoselov, A. Mishchenko, A. Carvalho, A. Castro Neto. 2D materials and van der Waals heterostructures. Science, 353, 461(2016).
[28] J. Lan, J. Qiao, W. Sung, C. Chen, R. Jhang, S. Lin, L. Ng, G. Liang, M. Wu, L. Tu, C. Cheng, H. Liu, C. Lee. Role of carrier-transfer in the optical nonlinearity of graphene/Bi2Te3 heterojunctions. Nanoscale, 12, 16956(2020).
[29] W. Liu, Y. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L. Liu, Z. Wei. Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials. Photonics Res., 6, 220(2018).
[30] Y. Hu, H. Chu, D. Li, Y. Li, S. Zhao, L. Dong, D. Li. Enhanced Q-switching performance of magnetite nanoparticle via compositional engineering with Ti3C2 MXene in the near infrared region. J. Mater. Sci. Technol., 81, 51(2021).
[31] Y. Hu, H. Chu, X. Ma, Y. Li, S. Zhao, D. Li. Enhanced optical nonlinearities in Ti3C2 MXene decorated Fe3O4 nanocomposites for highly stable ultrafast pulse generation. Mater. Today Phys., 21, 100482(2021).
[32] T. Zhang, H. Chu, L. Dong, Y. Li, S. Zhao, Y. Wang, J. Zhou, D. Li. Synthesis and optical nonlinearity investigation of novel Fe3O4@Ti3C2 MXene hybrid nanomaterials from 1 to 2 µm. J. Mater. Chem. C, 9, 1772(2021).
[33] T. Machappa, M. Ambika Prasad. AC conductivity and dielectric behavior of polyaniline/sodium metavenadate (PANI/NaVO3) composites. Physica B, 404, 4168(2009).
[34] S. Seetharaman, H. L. Bhar, P. Narayanan. Raman-spectroscopic studies on sodium meta-vanadate. J. Raman Spectrosc., 14, 401(1983).
[35] L. Hu, C. Xie, S. Zhu, M. Zhu, Y. Sun. Unveiling the mechanisms of metal-insulator transitions in V2O3: the role of trigonal distortion. Phys. Rev. B, 103, 085119(2021).
[36] A. Okamoto, Y. Fujita, C. Tatsuyama. Raman study on the high temperature transition in V2O3. J. Phys. Soc. Jpn., 52, 312(1983).
[37] P. Shvets, O. Dikaya, K. Maksimova, A. Goikhman. A review of Raman spectroscopy of vanadium oxides. J. Raman Spectrosc., 50, 1226(2019).
[38] H. Pan, H. Chu, Z. Pan, S. Zhao, M. Yang, J. Chai, S. Wang, D. Chi, D. Li. Large-scale monolayer molybdenum disulfide (MoS2) for mid-infrared photonics. Nanophotonics, 9, 4703(2019).
[39] L. Dong, H. Chu, X. Wang, Y. Li, D. Li. Enhanced broadband nonlinear optical response of TiO2 /CuO nanosheets via oxygen vacancy engineering. Nanophotonics, 10, 1541(2021).
[40] X. Sun, H. Nie, J. He, R. Zhao, X. Su, Y. Wang, B. Zhang, R. Wang, K. Yang. Passively Q-switched Nd:GdVO4 1.3 µm laser with few-layered black phosphorus saturable absorber. IEEE J. Sel. Top Quantum Electron, 24, 1600405(2017).
[41] L. Li, T. Li, L. Zhou, J. Fan, Y. Yang, W. Xie, S. Li. Passively Q-switched diode-pumped Tm,Ho:LuVO4 laser with a black phosphorus saturable absorber. Chin. Phys. B, 28, 213(2019).
[42] K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, J. Xu. Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber. IEEE J. Sel. Top Quantum Electron, 23, 1600205(2016).
[43] T. Gao, R. Zhang, Z. Shi, Z. Jiang, J. Cui. High peak power passively Q-switched 2 µm solid-state laser based on a MoS2 saturated absorber. Microw. Opt. Technol. Lett., 63, 1990(2021).
Get Citation
Copy Citation Text
Linghao Kong, Hongwei Chu, Na Li, Han Pan, Shengzhi Zhao, Dechun Li, "VOx/NaVO3 nanocomposite as a novel saturable absorber for passive Q-switching operation," Chin. Opt. Lett. 20, 051601 (2022)
Category: Optical Materials
Received: Jan. 7, 2022
Accepted: Feb. 18, 2022
Published Online: Mar. 16, 2022
The Author Email: Hongwei Chu (hongwei.chu@sdu.edu.cn), Dechun Li (dechun@sdu.edu.cn)