Chinese Journal of Lasers, Volume. 47, Issue 10, 1006001(2020)
Theoretical and Experimental Investigation of a 10-kW High-Efficiency 1070-nm Fiber Amplifier
Based on the theoretical model of ytterbium (Yb 3+)-doped fiber amplifier, the effect of the bend radius of Yb 3+ fiber on the mode transmission loss and dependence of optical-optical efficiency on the fiber length were analyzed. By employing the characteristics of the Yb 3+ fiber used in the experiment, the bend radius and fiber length were optimized. A master oscillation power amplification configuration was used. This configuration had a seed laser source with 170 W power, beam quality M2x=1.10, M2y=1.05, and a power amplifier with homemade 30/600 μm Yb 3+ fiber as the gain fiber. Dual-end pumping was adopted. We obtained a laser beam with an output power of 10.14 kW, a central wavelength of 1070.36 nm, and a 3 dB bandwidth of 5.32 nm. The beam quality of the output laser was M2x=3.12, M2y=3.18. In the amplification stage, the maximum optical-optical efficiency was 87.9%, and the slope efficiency reached up to 89.2%. The signal-to-noise ratio of the output laser was more than 45 dB.
Get Citation
Copy Citation Text
Chen Xiaolong, He Yu, Xu Zhongwei, Guo Xiaochen, Ye Ren, Liu Kai, Yang Yifeng, Shen Hui, Zhang Haibo, Yu Chunlei, He Bing, Hu Lili, Zhou Jun. Theoretical and Experimental Investigation of a 10-kW High-Efficiency 1070-nm Fiber Amplifier[J]. Chinese Journal of Lasers, 2020, 47(10): 1006001
Category: Fiber optics and optical communication
Received: Apr. 7, 2020
Accepted: --
Published Online: Oct. 9, 2020
The Author Email: Bing He (bryanho@siom.ac.cn)