[1] Z. Meng, M. Qiao, J. Ma, Z. Yu, K. Xu, X. Yuan. Snapshot multispectral endomicroscopy. Opt. Lett., 45, 3897-3900(2020).
[2] Y.-Z. Feng, D.-W. Sun. Application of hyperspectral imaging in food safety inspection and control: a review. Crit. Rev. Food Sci. Nutr., 52, 1039-1058(2012).
[3] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, J. Chanussot. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag., 1, 6-36(2013).
[4] A. Wagadarikar, R. John, R. Willett, D. Brady. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt., 47, B44-B51(2008).
[5] M. E. Gehm, R. John, D. J. Brady, R. M. Willett, T. J. Schulz. Single-shot compressive spectral imaging with a dual-disperser architecture. Opt Express, 15, 14013-14027(2007).
[6] J. M. Bioucas-Dias, M. A. T. Figueiredo. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16, 2992-3004(2007).
[7] X. Yuan. Generalized alternating projection based total variation minimization for compressive sensing. IEEE International Conference on Image Processing (ICIP), 2539-2543(2016).
[8] Y. Liu, X. Yuan, J. Suo, D. J. Brady, Q. Dai. Rank minimization for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell., 41, 2990-3006(2018).
[9] X. Miao, X. Yuan, Y. Pu, V. Athitsos. λ-net: reconstruct hyperspectral images from a snapshot measurement. IEEE/CVF International Conference on Computer Vision, 4059-4069(2019).
[10] J. Wang, Y. Zhang, X. Yuan, Y. Fu, Z. Tao. A new backbone for hyperspectral image reconstruction(2021).
[11] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).
[12] Y. Fu, T. Zhang, L. Wang, H. Huang. Coded hyperspectral image reconstruction using deep external and internal learning. IEEE Trans. Pattern Anal. Mach. Intell., 44, 3404-3420(2021).
[13] D. Lee, Y. Pu, Z. Gan, M. Sugiyama, R. Henao, U. Luxburg, I. Guyon, X. Yuan, R. Garnett, C. Li, A. Stevens, L. Carin. Variational autoencoder for deep learning of images, labels and captions. Advances in Neural Information Processing Systems, 29(2016).
[14] X. Yuan, D. J. Brady, A. K. Katsaggelos. Snapshot compressive imaging: theory, algorithms, and applications. IEEE Signal Process Mag., 38, 65-88(2021).
[15] K. Gregor, Y. LeCun. Learning fast approximations of sparse coding. 27th International Conference on Machine Learning, 399-406(2010).
[16] Y. Yang, J. Sun, H. Li, Z. Xu. Deep ADMM-Net for compressive sensing MRI. 30th International Conference on Neural Information Processing Systems, 10-18(2016).
[17] Y. Yang, J. Sun, H. Li, Z. Xu. ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell., 42, 521-538(2018).
[18] J. Zhang, B. Ghanem. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. IEEE Conference on Computer Vision and Pattern Recognition, 1828-1837(2018).
[19] L. Wang, C. Sun, Y. Fu, M. H. Kim, H. Huang. Hyperspectral image reconstruction using a deep spatial-spectral prior. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8032-8041(2019).
[20] Z. Meng, S. Jalali, X. Yuan. GAP-Net for snapshot compressive imaging(2020).
[21] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241(2015).
[22] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu. A survey on visual transformer(2020).
[23] Z. Meng, Z. Yu, K. Xu, X. Yuan. Self-supervised neural networks for spectral snapshot compressive imaging. IEEE/CVF International Conference on Computer Vision, 2622-2631(2021).
[24] T. Huang, W. Dong, X. Yuan, J. Wu, G. Shi. Deep Gaussian scale mixture prior for spectral compressive imaging. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16216-16225(2021).
[25] D. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52, 1289-1306(2006).
[26] E. J. Candès, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489-509(2006).
[27] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, D. J. Brady. Coded aperture compressive temporal imaging. Opt Express, 21, 10526-10545(2013).
[28] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, S. K. Nayar. Video from a single coded exposure photograph using a learned over-complete dictionary. International Conference on Computer Vision, 287-294(2011).
[29] D. Reddy, A. Veeraraghavan, R. Chellappa. P2C2: programmable pixel compressive camera for high speed imaging. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 329-336(2011).
[30] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 1, 586-597(2007).
[31] M. Aharon, M. Elad, A. Bruckstein. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54, 4311-4322(2006).
[32] X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, L. Carin. Compressive hyperspectral imaging with side information. IEEE J. Sel. Top. Signal Process., 9, 964-976(2015).
[33] W. He, N. Yokoya, X. Yuan. Fast hyperspectral image recovery of dual-camera compressive hyperspectral imaging via non-iterative subspace-based fusion. IEEE Trans. Image Process., 30, 7170-7183(2021).
[34] J. Yang, X. Liao, X. Yuan, P. Llull, D. J. Brady, G. Sapiro, L. Carin. Compressive sensing by learning a Gaussian mixture model from measurements. IEEE Trans. Image Process., 24, 106-119(2015).
[35] Z. Cheng, B. Chen, R. Lu, Z. Wang, H. Zhang, Z. Meng, X. Yuan. Recurrent neural networks for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell.(2022).
[36] S. Zheng, Y. Liu, Z. Meng, M. Qiao, Z. Tong, X. Yang, S. Han, X. Yuan. Deep plug-and-play priors for spectral snapshot compressive imaging. Photon. Res., 9, B18-B29(2021).
[37] Z. Lai, K. Wei, Y. Fu. Deep plug-and-play prior for hyperspectral image restoration. Neurocomputing, 481, 281-293(2022).
[38] S. Boyd, N. Parikh, E. Chu. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers(2011).
[39] Y. LeCun, Y. Bengio. Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 255-258(1998).
[40] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. Advances Information Processing Systems 25, 1097-1105(2012).
[41] K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 770-778(2016).
[42] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger. Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708(2017).
[43] J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You only look once: unified, real-time object detection. IEEE Conference on Computer Vision and Pattern Recognition, 779-788(2016).
[44] J. Long, E. Shelhamer, T. Darrell. Fully convolutional networks for semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440(2015).
[45] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, C.-W. Lin. Deep learning on image denoising: an overview. Neural Netw., 131, 251-275(2020).
[46] R. Stone. CenterTrack: an IP overlay network for tracking DoS floods. USENIX Security Symposium, 21, 114(2000).
[47] L. He, X. Liao, W. Liu, X. Liu, P. Cheng, T. Mei. FastReID: a PyTorch toolbox for general instance re-identification(2020).
[48] J. Hu, L. Shen, G. Sun. Squeeze-and-excitation networks. IEEE Conference on Computer Vision and Pattern Recognition, 7132-7141(2018).
[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 5998-6008(2017).
[50] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly. An image is worth 16 × 16 words: transformers for image recognition at scale(2020).
[51] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai. Deformable DETR: deformable transformers for end-to-end object detection. International Conference on Learning Representations, 1-16(2020).
[52] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen, B. Guo. CSWin transformer: a general vision transformer backbone with cross-shaped windows(2021).
[53] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou. Training data-efficient image Transformers & distillation through attention. International Conference on Machine Learning (PMLR), 10347-10357(2021).
[54] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, F. E. H. Tay, J. Feng, S. Yan. Tokens-to-token ViT: training vision Transformers from scratch on imageNet. IEEE International Conference on Computer Vision, 558-567(2021).
[55] C. Sun, A. Shrivastava, S. Singh, A. Gupta. Revisiting unreasonable effectiveness of data in deep learning era. IEEE International Conference on Computer Vision, 843-852(2017).
[56] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo. Swin Transformer: hierarchical vision Transformer using shifted windows(2021).
[57] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei. ImageNet: a large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition, 248-255(2009).
[58] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L. Zitnick. Microsoft COCO: common objects in context. European Conference on Computer Vision, 740-755(2014).
[59] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba. Scene parsing through ADE20K dataset. IEEE Conference on Computer Vision and Pattern Recognition, 633-641(2017).
[60] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, A. Torralba. Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis., 127, 302-321(2019).
[61] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte. SwinIR: image restoration using Swin Transformer. IEEE/CVF International Conference on Computer Vision, 1833-1844(2021).
[62] Y. Li, T. Yao, Y. Pan, T. Mei. Contextual Transformer networks for visual recognition(2021).
[63] Z. Peng, W. Huang, S. Gu, L. Xie, Y. Wang, J. Jiao, Q. Ye. Conformer: local features coupling global representations for visual recognition(2021).
[64] J. R. Hershey, J. L. Roux, F. Weninger. Deep unfolding: model-based inspiration of novel deep architectures(2014).
[65] X. Liao, H. Li, L. Carin. Generalized alternating projection for weighted-l2,1 minimization with applications to model-based compressive sensing. SIAM J. Imag. Sci., 7, 797-823(2014).
[66] B. Xu, N. Wang, T. Chen, M. Li. Empirical evaluation of rectified activations in convolutional network(2015).
[67] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. IEEE Conference on Computer Vision and Pattern Recognition, 1874-1883(2016).
[68] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).
[69] F. Yasuma, T. Mitsunaga, D. Iso, S. K. Nayar. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process., 19, 2241-2253(2010).
[70] I. Choi, D. S. Jeon, G. Nam, D. Gutierrez, M. H. Kim. High-quality hyperspectral reconstruction using a spectral prior. ACM Trans. Graph., 36, 218(2017).
[71] Z. Meng, J. Ma, X. Yuan. End-to-end low cost compressive spectral imaging with spatial-spectral self-attention. European Conference on Computer Vision, 187-204(2020).
[72] D. P. Kingma, J. Ba. ADAM: a method for stochastic optimization(2014).
[73] X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, L. Carin. Low-cost compressive sensing for color video and depth. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3318-3325(2014).
[74] X. Yuan, Y. Liu, J. Suo, Q. Dai. Plug-and-play algorithms for large-scale snapshot compressive imaging. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1447-1457(2020).
[75] Z. Cheng, R. Lu, Z. Wang, H. Zhang, B. Chen, Z. Meng, X. Yuan. BIRNAT: bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging. European Conference on Computer Vision, 258-275(2020).
[76] M. Qiao, Z. Meng, J. Ma, X. Yuan. Deep learning for video compressive sensing. APL Photon., 5, 30801(2020).
[77] Z. Wang, H. Zhang, Z. Cheng, B. Chen, X. Yuan. MetaSCI: scalable and adaptive reconstruction for video compressive sensing. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2083-2092(2021).
[78] Z. Cheng, B. Chen, G. Liu, H. Zhang, R. Lu, Z. Wang, X. Yuan. Memory-efficient network for large-scale video compressive sensing. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16246-16255(2021).
[79] Y. Sun, X. Yuan, S. Pang. High-speed compressive range imaging based on active illumination. Opt. Express, 24, 22836-22846(2016).
[80] Y. Sun, X. Yuan, S. Pang. Compressive high-speed stereo imaging. Opt. Express, 25, 18182-18190(2017).
[81] X. Yuan, Y. Pu. Parallel lensless compressive imaging via deep convolutional neural networks. Opt. Express, 26, 1962-1977(2018).
[82] T.-H. Tsai, X. Yuan, D. J. Brady. Spatial light modulator based color polarization imaging. Opt. Express, 23, 11912-11926(2015).
[83] M. Qiao, X. Liu, X. Yuan. Snapshot spatial–temporal compressive imaging. Opt. Lett., 45, 1659-1662(2020).
[84] R. Lu, B. Chen, G. Liu, Z. Cheng, M. Qiao, X. Yuan. Dual-view snapshot compressive imaging via optical flow aided recurrent neural network. Int. J. Comput. Vis., 129, 3279-3298(2021).
[85] Y. Xue, S. Zheng, W. Tahir, Z. Wang, H. Zhang, Z. Meng, L. Tian, X. Yuan. Block modulating video compression: an ultra low complexity image compression encoder for resource limited platforms(2022).
[86] B. Zhang, X. Yuan, C. Deng, Z. Zhang, J. Suo, Q. Dai. End-to-end snapshot compressed super-resolution imaging with deep optics. Optica, 9, 451-454(2022).
[87] Z. Chen, S. Zheng, Z. Tong, X. Yuan. Physics-driven deep-learning enables temporal compressive coherent diffraction imaging. Optica, 9, 677-680(2022).
[88] T.-H. Tsai, P. Llull, X. Yuan, D. J. Brady, L. Carin. Spectral-temporal compressive imaging. Opt. Lett., 40, 4054-4057(2015).
[89] M. Qiao, Y. Sun, J. Ma, Z. Meng, X. Liu, X. Yuan. Snapshot coherence tomographic imaging. IEEE Trans. Comput. Imaging, 7, 624-637(2021).
[90] X. Yuan. Compressive dynamic range imaging via Bayesian shrinkage dictionary learning. Opt. Eng., 55, 123110(2016).
[91] X. Yuan, X. Liao, P. Llull, D. Brady, L. Carin. Efficient patch-based approach for compressive depth imaging. Appl. Opt., 55, 7556-7564(2016).
[92] X. Ma, X. Yuan, C. Fu, G. R. Arce. LED-based compressive spectral-temporal imaging. Opt. Express, 29, 10698-10715(2021).
[93] Y. Cai, J. Lin, X. Hu, H. Wang, X. Yuan, Y. Zhang, R. Timofte, L. Van Gool. Mask-guided spectral-wise Transformer for efficient hyperspectral image reconstruction(2022).
[94] J. Lin, Y. Cai, X. Hu, H. Wang, X. Yuan, Y. Zhang, R. Timofte, L. Van Gool. Coarse-to-fine sparse Transformer for hyperspectral image reconstruction(2022).
[95] X. Hu, Y. Cai, J. Lin, H. Wang, X. Yuan, Y. Zhang, R. Timofte, L. Van Gool. HDNet: high-resolution dual-domain learning for spectral compressive imaging. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 17542-17551(2022).
[96] J. Wang, Y. Zhang, X. Yuan, Z. Meng, Z. Tao. Modeling mask uncertainty in hyperspectral image reconstruction(2021).