①IPCC Special Report on Global Warming of 1.5 °C, https:∥doi.org/10.1017/9781009157940.001
Remote Sensing Technology and Application, Volume. 39, Issue 3, 679(2024)
Spatial and Temporal Characteristics and Population Exposure of Heat Waves in China’s Coastal Regions
China's coastal areas are not only the most strongly interacting zones extending from land to sea, but also the natural spatial units on the surface of the earth affected by runoff, tides and the effects of human activities and climate change. In this paper, using with the 2003~2018 high quality temporal resolution Land Surface Temperature (LST) and Near Surface Air Temperature (NSAT) products, the spatial and temporal distribution pattern and synergy of urban heat islands and urban heat waves in coastal cities in China are systematically compared. The results show that: (1) Extreme high temperature events in China's coastal regions show a trend of increasing intensity and duration. Specifically, the intensity of urban heat islands in summer is as high as 2.25 ℃, the average heatwave frequency based on ground temperature in the entire coastal area is 24.59 times, and the temperature-based heat wave frequency is 16.33 times, accounting for 90.81% and 96.68% of the annual heat wave frequency, respectively; (2) The frequency of urban heat waves and urban heat island intensity is significantly positively correlated in the North Temperate Zone and North Subtropical Zone along the coast, and is most obvious in the North Temperate Zone. An increase of 1°C in average LST can lead to an average increase in heat wave events twice. Among them, the heat wave frequency in the North Temperate Zone increased the fastest in the three major regions, and the compound growth rate of heat wave frequency based on LST and NSAT exceeded 5%; (3) From 2003 to 2018, the urban population of China's coastal regions increased by 59%, and the number of people affected by heat waves increased by nearly 370%, exceeding 5% of the total urban population (about 40 million people). Although the urban thermal environment in China's coastal regions and the El Ni?o and La Ni?a phenomena in the sea show a more consistent distribution in time and space, how the overall urban change and population growth promote the change of high temperature and thermal environment patterns in different regions still need to be further discussed and analysed using longer time series and high spatial and spatial resolution data.
①IPCC Special Report on Global Warming of 1.5 °C, https:∥doi.org/10.1017/9781009157940.001
1 引 言
联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC) 2018年发布的特别报告①中指出,人类活动导致全球平均温度相较于工业化前增长了约1.0°C。如果继续以目前的速率升温,全球升温将在2030年至2052年达到1.5°C。伴随极端高温与高湿度的增加,全球 13 115个城市的极端高温暴露人口增加了200%,影响了17亿人口。总体城市变暖导致暴露率比单纯人口增长高出52%。未来全球将面临更加频繁、持续时间更长的极端天气事件,对社会、经济、农业生产,特别是对人类健康福祉都会造成严重威胁[
典型的极端高温热浪事件,是指持续数日的极端高温时期[
但是已有热浪与热岛的相互关系研究大多数集中在北美、欧洲和澳大利亚的中纬度城市[
目前全球距海岸线100 km的沿海地区居住的人口占世界人口的比重约为40%[
2 研究方法与数据来源
2.1 研究区概况
中国海岸带地处欧亚大陆与太平洋的交汇处,北起辽宁省鸭绿江入海口,西至广西壮族自治区南部的北仑河,大陆岸线约18 000 km,海岛岸线约14 000 km。相较于内陆而言,海岸带在地区和区域尺度上存在密切的陆地—海洋—大气相互作用,海陆热浪共生将加剧沿海地区人口的发病率和死亡率,对海陆生态系统造成严重的负面影响。本文选取中国东部海岸线内陆 100 km以内的60个城市为研究区(
2.2 数据来源与预处理
研究涉及的主要数据见
|
2.3 研究方法
2.3.1 城市热浪与人口暴露测度
城市热岛是指城市内部温度相较于外围地区温度高的现象,本研究将城市热岛强度定义为城区内部平均温度与非城区平均温度之差。其中城区的范围由基于夜间灯光数据提取的城市范围[
其中:Tseasonal_mean和Tseasonal_std指的是基准历史时期以像元为基本单元的均温和标准差;T90表示基准历史时期的90百分位数。根据数据的可获取性,近地表气温和地表温度的基准时期分别为1979~2018年和2003~2019年,计算40 a近地表气温和17 a地表温度均值和方差,进一步计算分析2003~2018年两种温度测算下的我国沿海地区热浪的时空变化格局。
|
同时,为了更好度量人口受极端高温热浪事件的影响暴露情况,以栅格化热浪频次和人口密度数据为基础,计算每个像元内人口的热暴露情况。当年的热浪频次如果超过历史热浪均值时,则判定该像元内的人口则受极端高温热浪事件影响。基于热浪频次计算结果与人口密度数据的空间关联性统计分析,可以获取近15 a中国沿海区域在极端高温热浪暴露下的人口总数。
2.3.2 城市热环境指标的时空趋势性检验
为了测试城市热岛强度和城市热浪强度在过去近20 a的变化趋势,使用线性回归分析和Mann-Kendall(MK)[
其中:n是数据点的个数;xi和xj是里面的数据值时间序列i和j(j>i)·S的方差为VAR(S)(
若S > 0,且|
3 结果与分析
3.1 跨纬度区地温和气温的协同作用
沿海区域三大气候区城市热岛强度和城市热浪频次的多年均值和年际变化分别如
|
与此同时,在城市热岛的协同作用下,3个近海区域基于气温指标所反映出的城市热浪的平均频次最强的区域是在亚热带地区,暖温带地区和热带地区次之。类似于城市热岛强度的长期变化趋势,中国沿海地区的城市热浪发生频次也在过去近20 a中呈增长趋势。如
随着全球平均气温的升高,城市区域范围内微小平均地表温度的变化也会导致极端高温热浪事件的频次发生不成比例的增加。通过计算UHI和 UHW的相关性发现,在沿海的暖温带与亚热带地区,城市热浪与城市热岛的强度呈现显著正相关(P<0.05,R2 >0.3),且在暖温带地区最为明显,1 ℃平均地表温度的变化能够导致平均2次热浪事件的增加。
3.2 夏季极端高温热浪事件的跨区域时空分异
本文通过进一步对比2003年至2018年间夏季(7月至9月)基于地温(LST-UHW)和气温产品(NSAT-UHW)的城市热浪变化趋势(
由
审图号:GS(2019)1822号
为了进一步探究中国沿海地区极端高温热浪事件的机制,本研究结合对全球海域影响最大的厄尔尼诺和拉尼娜事件讨论海温异常与沿海区域热浪的耦合关系。厄尔尼诺是在赤道中、东太平洋每隔几年发生一次,持续时间长达半年以上的大范围的海表温度异常增暖的现象。与厄尔尼诺相反,赤道太平洋东部和中部海面温度持续异常偏冷的现象被称为拉尼娜。研究基于Niño 3.4 指数±0.5 ℃的阈值用于划分厄尔尼诺(>0.5)、中性和拉尼娜(<-0.5)事件[
审图号为GS(2019)1822号
由
3.3 极端热环境人口暴露
在2003 年至 2018 年期间建成密度增长率最高的是亚热带区域(148%),其次是暖温带区域(92%)和热带区域(61%)。同时段内人口总量增长最高的区域是热带区域(36%),其次是亚热带区域(29%)和暖温带区域(16%)。根据我们的人口暴露统计结果(
|
在城市区域范围内,受地温热环境暴露的城区人群数增长率最高的为热带区域,其复合增长率为14.25%,亚热带(10.31%)和暖温带(9.73%)紧随其后。而受气温环境暴露的城区人数增长速率最快的区域为暖温带地区,其复合增长率为12.43%,热带(5.07%)和亚热带(4.20%)紧随其后。即过去近20年,受地温影响的城区人口总数占总人口总数的比例从2003年的21.81%到2018年的47.13%,而受气温影响城区人口总数占总人口总数的比例保持在17%~19%之间上下浮动。
4 结论与讨论
4.1 结论
本研究以中国沿海区域海岸带100 km以内的60个城市为研究,评估2003到2018年全年和夏季的地温和气温之间的关系。研究发现,城市地温与气温的热环境相互协同作用非常明显,夏季城市热环境的时空分布达到高度一致。具体表现为:
(1)城市热岛强度和热浪强度的相互作用在亚热带地区凸显
中国沿海地区夏季的三大区域在城市热岛强度均高达2.25°C以上,整个沿海区域平均基于地温的热浪次数是24.59次,基于气温的热浪次数是16.33次,分别占全年热浪事件的90.81%和96.68%。其中,夏季地区亚热带区域的平均城市热岛最强(> 2.87°C),其对应的气温热浪事件也最为明显(27.67次),相较东南及其粤西北海岸线地区的气温热浪频次平均高出22.57次。由于数据的可获取性,本文无法获取近两年高时空分辨率的气温数据进行时空格局研究,但是截止至今年8月,中国气象观测数据也显示,中国沿海地区,特别是亚热带沿海地区经历了为1961年有完整气象观测记录以来历史同期最多的高温热浪事件。华北南部、华东大部、华南东部等地高温日数普遍在20 d以上,其中沿海的亚热带地区,主要包括湖北大部、江苏南部、浙江、福建中北部、江西大部,平均高温日数超过30 d。即2022年度中国沿海地区的热浪分布趋势也与我们的统计结果在空间分布上具有极高的一致性。
(2)厄尔尼诺现象(ENSO)和拉尼娜(La Niña) 对海岸带城市热浪的影响呈现纬度带的时空分异
已有研究表明,ENSO能够抑制西热带太平洋上空的对流,对热带和热温带地区的年际海表温度变化具有强烈的影响。具体表现为在ENSO现象的成熟阶段中国暖温带地区冬季会形成了一个异常的低层反气旋,并通过反气旋西翼的西南风异常削弱了东亚冬季风。因此,ENSO的成熟期往往伴随着中国暖温带地区较弱的东亚冬季风及其近海区域相应升高的海温[
(3)亟需针对不同气候、人群和社会经济发展条件,制定高温热浪脆弱性评估指标体系
城市热岛与高温热浪作为典型的城市化特征灾害,已严重影响居民的生命健康。在中国沿海区域范围内,城市人口在过去15 a间增长了59.7%,到2018年度,中国沿海地区人口总数超过6.37亿。而相应受城市热岛和热浪影响的城区人口数在过去15 a间增长率超过370%,影响人数已超过1亿。其中我国中部亚热带地区的城区人口总数在3个区域中最大,在2018年人口总数超过了8 800万人,该区域受城市热岛和热浪影响的人口分别超过了6 000和1 000万。暖温带和热带暴露在热岛和热浪环境中的城区人口总数虽然比亚热带地区有所减少,但是暖温带地区的城市热浪频次的增长率及其暴露人口数的增长率都超过热带和亚热带地区。同时,暖温带地区的农作物产量高度依赖于夏季温度,夏季高温对区域农业、生态系统、经济和居民生活造成的严重影响不可忽视。因此,沿海地区空间异质的暴露模式突显了我国迫切需要制定针对符合区域热环境变化的适应和预警系统,以减少全球不同城市住区的城市极端高温暴露造成的危害。
4.2 讨论
目前已有的城市热岛、热浪和极端高温事件定义的多样性反映了极端高温研究的重要性。地球信息科学领域的专家学者倾向于使用具有普适性的统计数据和严格的阈值来对比城市热环境的变化趋势[
已有研究
中国沿海地区集聚了超过42%的中国城市人口,该区域的城市热环境受径流、潮汐和人类活动与气候变化作用最强烈,是最典型的陆海过渡区。本研究关注中国沿海地区城市热岛与城市热浪区域的时空异质性,侧重对比分析传统热岛和热浪的模式、极端差异及其协同作用。热岛与热浪模式的差异对基础热环境过程真实信号的表征具有重要意义,也是未来气候变化情景规划、城市热环境适应发展和早期预警系统发展的关键。未来的城市热环境研究需要更加重视人与自然的相互关系,从社区尺度到区域尺度,揭示不同气候背景、不同高温热浪风险模式和不同人群的高温热浪脆弱性评估指标,为政府、城市管理者在城市应急响应层面的介入,提供重要的数据支撑和研究依据。
[1] N WATTS, M AMANN, N ARNELL et al. The 2019 report of the lancet countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. Lancet, 394, 1836-1878(2019).
[2] Lei FENG, Xudong LI. Effects of heat waves on human health:A review of recent study. Journal of Environment and Health, 33, 182-188(2016).
[3] S E PERKINS. A review on the scientific understanding of heatwaves - their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research, 164, 242-267(2015).
[4] P J ROBINSON. On the definition of a heat wave. Journal of Applied Meteorology, 40, 762-775(2001).
[5] T R OKE. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1-24(1982).
[6] Jianguo TAN. Global warming, urban heat island, heat wave and human health, 168(2008).
[7] D LI, E BOU-ZEID. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52, 2051-2064(2013).
[8] Y Ohashi, H Kida. Local circulations developed in the vicinity of both coastal and inland urban areas:A numerical study with a mesoscale atmospheric model. Journal of Applied Meteo⁃rology, 41, 30-45(2002).
[9] R M HORTON, J S MANKIN, C LESK et al. A review of recent advances in research on extreme heat events. Current Climate Change Reports, 2, 242-259(2016).
[10] G MOLNAR, A Z GYONGYOSI. Integration of an LCZ-based classification into WRF to assess the intra-urban temperature pattern under a heatwave period in Szeged, Hungary. Theoretical and Applied Climatology, 138, 1139-1158(2019).
[11] D ARGUESO, A Di LUCA, S E PERKINS-KIRKPATRICK et al. Seasonal mean temperature changes control future heat waves. Geophysical Research Letters, 43, 7653-7660(2016).
[12] R W SCHLEGEL, E OLIVER, T WERNBERG et al. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Progress in Oceanography, 151, 189-205(2017).
[13] D FOUNDA, M SANTAMOURIS. Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 7(2017).
[14] S MILLER, B D KEIM, R W TALBOT et al. Sea breeze: structure, forecasting, and impacts. Reviews of Geophysics, 41(2003).
[16] Yuting CHENG, Zhaohua LIU, Linlin LU et al. Spatiotemporal dynamics of surface urban heat island in coastal mega cities along the belt and road from remote sensing data. Remote Sensing Technology and Application, 35, 1197-1205(2020).
[17] Bingwei HE, Wei ZHAO, Ainong LI et al. Comparative study on thermal environment between old urban areas and new urban areas based on Landsat 8 remote sensing image: A case study of Chengdu. Remote Sensing Technology and Application, 32, 1141-1150(2017).
[18] Zhongli LIN, Hanqiu XU. Comparative study on the urban heat island effect in “strove cities” during the last 20 years. Remote Sensing Technology and Application, 34, 521-530(2019).
[19] M ZHAO, C CHENG, Y ZHOU et al. A global dataset of annual urban extents (1992-2020) from harmonized nighttime lights. Earth System Science Data, 14, 517-534(2022).
[20] T R OKE. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1-24(1982).
[21] G A MEEHL, C TEBALDI. More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994-997(2004).
[22] E M FISCHER, C SCHAR. Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 3, 398-403(2010).
[23] M GOCIC, S TRAJKOVIC. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172-182(2013).
[24] Y ZHANG, Z ZHAO, E LIAO et al. Enso and PDO-related interannual and interdecadal variations in the wintertime sea surface temperature in a typical subtropical strait. Climate Dynamics(2022).
[25] J WEI, W WANG, Q SHAO et al. Heat wave variations across China tied to global SST modes. Journal of Geophysical Research-Atmospheres, 125(2020).
[26] S A KLEIN, B J SODEN, N C LAU. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12, 917-932(1999).
[27] R WU, C LI, J LIN. Enhanced winter warming in the eastern China coastal waters and its relationship with ENSO. Atmospheric Science Letters, 18, 11-18(2017).
[28] S CHEN, W CHEN, K WEI. Recent trends in winter temperature extremes in eastern China and their relationship with the arctic oscillation and ENSO. Advances in Atmospheric Sciences, 30, 1712-1724(2013).
[29] Y CHEN, Y ZHAO, J FENG et al. Enso cycle and climate ano-maly in China. Chinese Journal of Oceanology and Limnology, 30, 985-1000(2012).
[30] T T SMITH, B F ZAITCHIK, J M GOHLKE. Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118, 811-825(2013).
[31] A CASANUEVA, A BURGSTALL, S KOTLARSKI et al. Overview of existing heat-health warning systems in Europe. International Journal of Environmental Research and Public Health, 16(2019).
[32] K PARSONS. Heat stress standard iso 7243 and its global application. Industrial Health, 44, 368-379(2006).
[33] Shuyuan LIU, Jingchun SONG, Handing MAO et al. Expert consensus on the diagnosis and treatment of heat stroke in China. Medical Journal of Chinese People's Liberation Army, 44, 181-196(2019).
[34] Chang CAO, Xuhui LI, Mi ZHANG et al. Correlation analysis of the urban heat island effect and its impact factors in China. Environmental Science, 38, 3987-3997(2017).
Get Citation
Copy Citation Text
Chumzhu WEI, Yuanmei WAN, Gengzhi HUANG, Liang ZHOU, Ying CHANG. Spatial and Temporal Characteristics and Population Exposure of Heat Waves in China’s Coastal Regions[J]. Remote Sensing Technology and Application, 2024, 39(3): 679
Category:
Received: Oct. 31, 2022
Accepted: --
Published Online: Dec. 9, 2024
The Author Email: