Journal of Infrared and Millimeter Waves, Volume. 40, Issue 6, 738(2021)

Concealed Object Detection in Millimeter Wave Image Based on Global Correlation of Multi-level Features in Cross-section Sequence

Wan-Ting HE1,2, Bo ZHANG1,2, Bin WANG1,2, Xiao-Wei SUN3, Ming-Hui YANG3, and Xiao-Feng WU1,2、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University,Shanghai 200433,China
  • 2Research Center of Smart Networks and Systems,School of Information Science and Technology,Fudan University,Shanghai 200433,China
  • 3Key Laboratory of Terahertz Technology,Shanghai Institute of Microsystem and Information Technology,Shanghai 200050,China
  • show less

    The concealed object detection in millimeter wave (MMW) image is of great significance in non-contact body inspection. At present, MMW radar has been able to obtain 3D images, which are simply compressed into 2D images in current methods in general. However, such a rough processing does not take the information along the depth direction into account which results in a bottleneck of detection accuracy. To address this issue, a novel framework for MMW image concealed object detection is proposed, in which a 3D image is regarded as a sequence of 2D cross-sectional images and the most of the internal logic relations of features in the crosss-sectional images can be explored along the sequential direction, i.e. the depth direction of the 3D image. The framework consists of a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) network. The former is used to extract the multiscale features in each 2D cross-sectional image while the latter is used to explore the global correlation of the above features along the depth direction to achieve feature-level information fusion and improve the accuracy of 2D location prediction. Experimental results show that the proposed method achieves remarkable results comparing to the known detection method based on 2D MMW images.

    Tools

    Get Citation

    Copy Citation Text

    Wan-Ting HE, Bo ZHANG, Bin WANG, Xiao-Wei SUN, Ming-Hui YANG, Xiao-Feng WU. Concealed Object Detection in Millimeter Wave Image Based on Global Correlation of Multi-level Features in Cross-section Sequence[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 738

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 8, 2021

    Accepted: --

    Published Online: Feb. 16, 2022

    The Author Email: Xiao-Feng WU (xiaofengwu@fudan.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2021.06.006

    Topics