The generation of high frequency, high power optical pulses is of importance for a number of applications, from frequency conversion based on nonlinear phenomena to regeneration of optical pulse trains, as well as terahertz generation [
Photonics Research, Volume. 2, Issue 6, 186(2014)
Passive mode-locking in semiconductor lasers with saturable absorbers bandgap shifted through quantum well intermixing
Passive mode-locking in semiconductor lasers in a Fabry–Perot configuration with a bandgap blueshift applied to the saturable absorber (SA) section has been experimentally characterized. For the first time a fully post-growth technique, quantum well intermixing, was adopted to modify the material bandgap in the SA section. The measurements showed not only an expected narrowing of the pulse width but also a significant expansion of the range of bias conditions generating a stable train of optical pulses. Moreover, the pulses from lasers with bandgap shifted absorbers presented reduced chirp and increased peak power with respect to the nonshifted case.
1. INTRODUCTION
The generation of high frequency, high power optical pulses is of importance for a number of applications, from frequency conversion based on nonlinear phenomena to regeneration of optical pulse trains, as well as terahertz generation [
The analysis in [
Based on this qualitative analysis, a blue bandgap shift applied to the SA has the potential to shift the range of bias conditions providing stable ML to higher currents. Previous research [
Sign up for Photonics Research TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
The bandgap of the SA region was blueshifted through quantum well intermixing (QWI). Unlike the techniques previously employed to achieve blue detuning of the SA [
2. DEVICE DESIGN AND FABRICATION
The devices characterized were fabricated at the University of Glasgow, exploiting the facilities of the James Watt Nanofabrication Centre. The material used was a MQW AlGaInAs/InP wafer structure, and a detailed description of the epitaxial layers can be found in [
The geometry of the fabricated structures is depicted in Fig.
Figure 1.Schematic of the fabricated device geometry.
Prior to the characterization of the SMLLs, the obtained bandgap shift was verified through wavelength scan measurements of a specifically designed waveguide array on a chip, using the setup depicted in Fig.
Figure 2.(a) Schematic of the setup used to test the obtained bandgap shift and (b) band edge comparison between nonintermixed and intermixed cases for 2 μm wide waveguides.
3. EXPERIMENTAL RESULTS AND DISCUSSION
For the characterization of the devices, the SMLLs were temperature controlled and kept at 20°C throughout the whole of the experiments, and their output was collected from the gain section side with an optical fiber lens and simultaneously distributed through fused fiber splitters between an intensity autocorrelator (IAC) and an optical spectrum analyzer (OSA), with power splitting ratios of 90% and 10%, respectively. Before coupling into the IAC, the optical signal was amplified by means of an erbium-doped fiber amplifier, whose gain was kept constant at 15 dB and whose output polarization was controlled to maximize the IAC output. A LabView code was used for automating the data collection, for simultaneous acquisition of the IAC and OSA traces, and for characterization of an extensive range of gain section currents and SA reverse biases.
Devices with SA lengths ranging from 1% to 7% of the total cavity length
Figure 3.Comparison between pulses with FWHM of (a) 1.4 ps and (b) 2.7 ps for a SMLL whose blue-detuned SA is 7% of the total cavity length.
Figure 4.Color maps show the FWHM of the IAC pulses emitted by the SMLLs with intermixed SAs for absorbers whose length is (left) 1% of the cavity length and (right) 2%.
The effect of blue detuning of the SA can be clearly observed from the juxtaposition of the color maps shown in Fig.
Figure 5.Color maps show the areas where the FWHM of the IAC pulses is lower than 2.5 ps for (a) one SMLL with nonintermixed 7% SA and (b) a device with a blue-detuned 7% SA; (c) and (d) show an enlarged section of the maps for currents between 250 and 350 mA.
The FWHM of the optical spectrum was also extracted through data post-processing, and the results were combined with the IAC FWHM data to provide the time–bandwidth product (TBP) of the pulses. This quantity tells how close a pulse is to its transform limit, that is, the narrowest possible spectrum for a given pulse duration.
The TBP of a transform-limited
Figure 6.Color maps show the TBP of the pulses for (a) one SMLL with nonintermixed 7% SA and (b) a device with a blue-detuned 7% SA, for currents between 250 and 350 mA.
The total power versus current measurements, carried out with a broad area detector, showed the same level of average power between intermixed and nonintermixed devices fabricated on the same chip. This together with the narrower pulses leads the intermixed devices to exhibit higher peak power, with 215 mW achieved versus only 182 mW obtained from the nonintermixed lasers.
4. CONCLUSION
In summary, we have demonstrated how a bandgap blue detuning applied to the SA of a SMLL can improve the laser performance in terms of pulse width, optical chirp, and peak power. The devices whose absorbers had undergone QWI emit pulses whose FWHM is 30% lower than that obtained from standard SMLLs fabricated on the same MQW platform. The temporal narrowing exhibited by the pulses also contributed to an improvement in the pulses’ peak power, which also experienced an increase between the devices compared. Moreover, the TBP data clearly suggest that a blue-detuned absorber is beneficial in reducing the amount of chirp experienced by the pulses. However, the most interesting feature is the expansion of the region in which stable ML is achieved, with a
[2] D. Burghoff, T. Kao, N. Han, C. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, Q. Hu. Terahertz laser frequency combs. Nat. Photonics, 8, 462-467(2014).
[3] Y. L. Kam, C. Harder, J. S. Smith, A. Yariv. Passive mode-locking of buried heterostructures lasers with nonuniform current injection. Appl. Phys. Lett., 42, 771-774(1983).
[6] P. Stolarz, J. Javaloyes, G. Mezősi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, S. Balle. Spectral dynamical behavior in passively mode-locked semiconductor lasers. IEEE Photon. J., 3, 1067-1082(2011).
Get Citation
Copy Citation Text
Vincenzo Pusino, Michael J. Strain, Marc Sorel, "Passive mode-locking in semiconductor lasers with saturable absorbers bandgap shifted through quantum well intermixing," Photonics Res. 2, 186 (2014)
Category: Mode-locked Lasers
Received: Aug. 14, 2014
Accepted: Oct. 23, 2014
Published Online: May. 21, 2015
The Author Email: Vincenzo Pusino (Vincenzo.Pusino@glasgow.ac.uk)