Journal of Infrared and Millimeter Waves, Volume. 40, Issue 5, 696(2021)

Infrared and visible image fusion based on edge-preserving and attention generative adversarial network

Wen-Qing ZHU1,2,3, Xin-Yi TANG1,3、*, Rui ZHANG1,2,3, Xiao CHEN1,2,3, and Zhuang MIAO1,2,3
Author Affiliations
  • 1Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Key Laboratory of Infrared System Detection and Imaging Technology,Chinese Academy of Sciences,Shanghai 200083,China
  • show less

    Infrared and visible image features are quite different, and there are no ideal fused images supervise neural networks to learn the mapping relationship between the source images and the fused images. Thus, the application of deep learning is limited to the field of image fusion. To solve this problem, a generative adversarial network framework based on attention mechanism and edge loss is proposed, which is applied to the infrared and visible image fusion. Derived from the thoughts of attention mechanism and adversarial training, the fusion problem is regarded as an adversarial game between the source images and the fused images, and combining channel attention and spatial attention mechanism can learn nonlinear relationship between channel domain features and spatial domain features, which enhances the expression of salient target features. At the same time, an edge-based loss function is proposed, which converts the mapping relationship between the source image pixels and the fused image pixels into the mapping relationship between the edges. Experimental results on multiple datasets demonstrate that the proposed method can effectively fuse infrared target and visible texture information, sharpen image edges, and significantly improve image clarity and contrast.

    Tools

    Get Citation

    Copy Citation Text

    Wen-Qing ZHU, Xin-Yi TANG, Rui ZHANG, Xiao CHEN, Zhuang MIAO. Infrared and visible image fusion based on edge-preserving and attention generative adversarial network[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 696

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 29, 2020

    Accepted: --

    Published Online: Sep. 29, 2021

    The Author Email: Xin-Yi TANG (gq227@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2021.05.017

    Topics