Engineering special nonclassical quantum states are of paramount importance in quantum information science, metrology, and exploring fundamental physics [1–5]. In particular,
Photonics Research, Volume. 9, Issue 7, 1289(2021)
Motional n-phonon bundle states of a trapped atom with clock transitions
Quantum manipulation of individual phonons could offer new resources for studying fundamental physics and creating an innovative platform in quantum information science. Here, we propose to generate quantum states of strongly correlated phonon bundles associated with the motion of a trapped atom. Our scheme operates in the atom–phonon resonance regime where the energy spectrum exhibits strong anharmonicity such that energy eigenstates with different phonon numbers can be well-resolved in the parameter space. Compared to earlier schemes operating in the far dispersive regime, the bundle states generated here contain a large steady-state phonon number. Therefore, the proposed system can be used as a high-quality multiphonon source. Our results open up the possibility of using long-lived motional phonons as quantum resources, which could provide a broad physics community for applications in quantum metrology.
1. INTRODUCTION
Engineering special nonclassical quantum states are of paramount importance in quantum information science, metrology, and exploring fundamental physics [1–5]. In particular,
On the other hand, the ability to manipulate individual phonon allows the experimental creation of
We note that existing schemes [13–15,30] for creating
Sign up for Photonics Research TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
In this work, we propose to generate
2. MODEL AND HAMILTONIAN
Without loss of generality, we consider a single
Figure 1.(a) Schematic of the system. A
To transfer Eq. (1) into a more familiar form, we introduce a spin rotation,
3. GENERALIZED QUANTUM STATISTICS
For a complete description of the system, we should also take into account the dissipation of the phonons. As a result, the dynamics of the atom–phonon system is now described by the master equation
To characterize the statistic properties of the phonons, we introduce the generalized
Finally, we specify the parameters used in numerical simulations. For the
4. MOTIONAL
Before presenting our results on phonon statistics, it is instructive to explore the energy spectrum of the system. In Fig. 1(b), we demonstrate the familiar level structure of a JCM (
Let us first consider the single phonon states by fixing the phonon frequency at
Figure 2.Distributions of (a)
The SPB around
To reveal more details, we also plot, in Fig. 2(d), the distributions of
We now turn to study the properties of phonon states in the atom–phonon resonance regime, i.e.,
Figure 3(a) shows the phonon number
Figure 3.(a) Distribution of
To explore the statistic properties of the phonon emissions, we first map out, in Fig. 3(b),
Finally, we study the properties of the emitted phonon in the multiphonon resonance regime. As shown in Fig. 3(a), only for sufficiently large pumping, i.e.,
Figure 4.Statistic properties of motional two-phonon (left column) and three-phonon (right column) states. (a) and (b) show the distributions of
To further confirm the bundle-emission nature of the phonon states, we plot, in Fig. 4(c), the typical interval dependence of the correlation functions
We remark that the underlying reason that
5. CONCLUSIONS
Based upon the currently available techniques in experiments, we have proposed to generate motional
Acknowledgment
Acknowledgment. We are grateful to Yue Chang for insightful discussions.
APPENDIX A: MODEL HAMILTONIAN
We present the derivation of the generalized QRM of phonon by utilizing optical clock transition in an ultracold single atom. For specificity, we consider an optical clock transition frequency of
In addition, the single two-level atom is confined in a spin-dependent one-dimensional harmonic trap
After performing the gauge transformations
To gain more insight, we introduce the position-momentum representation,
APPENDIX B: ENERGY SPECTRA FOR GENERALIZED QRM
We present the details on the derivation of the energy spectrum for the generalized QRM. By introducing a gauge transformation of the spin rotation
For fixing
Figure 5.Typical energy spectrum of Hamiltonian Eq. (
Figure 6.(a) Energy spectrum of Hamiltonian Eq. (
APPENDIX C: THE EFFECT OF DECAY AND DEPHASING
We present the numerical results of the antibunching of the phonon with different atomic decay and dephasing. Figures?
Figure 7.
Figure 8.
[1] L. M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).
[2] V. Giovannetti, S. Lloyd, L. Maccone. Quantum metrology. Phys. Rev. Lett., 96, 010401(2006).
[3] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135-174(2007).
[4] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, P. Treutlein. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 90, 035005(2018).
[5] D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M. W. Mitchell, S. Pirandola. Quantum-enhanced measurements without entanglement. Rev. Mod. Phys., 90, 035006(2018).
[6] I. Afek, O. Ambar, Y. Silberberg. High-noon states by mixing quantum and classical light. Science, 328, 879-881(2010).
[7] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).
[8] M. D’Angelo, M. V. Chekhova, Y. Shih. Two-photon diffraction and quantum lithography. Phys. Rev. Lett., 87, 013602(2001).
[9] J. C. López Carreño, C. Sánchez Muñoz, D. Sanvitto, E. del Valle, F. P. Laussy. Exciting polaritons with quantum light. Phys. Rev. Lett., 115, 196402(2015).
[10] K. E. Dorfman, F. Schlawin, S. Mukamel. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys., 88, 045008(2016).
[11] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).
[12] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu.
[13] C. S. Muñoz, E. del Valle, A. G. Tudela, K. Müller, S. Lichtmannecker, M. Kaniber, C. Tejedor, J. J. Finley, F. P. Laussy. Emitters of
[14] C. S. Muñoz, F. P. Laussy, E. del Valle, C. Tejedor, A. González-Tudela. Filtering multiphoton emission from state-of-the-art cavity quantum electrodynamics. Optica, 5, 14-26(2018).
[15] Y. Chang, A. González-Tudela, C. Sánchez Muñoz, C. Navarrete-Benlloch, T. Shi. Deterministic down-converter and continuous photon-pair source within the bad-cavity limit. Phys. Rev. Lett., 117, 203602(2016).
[16] P. Bienias, S. Choi, O. Firstenberg, M. F. Maghrebi, M. Gullans, M. D. Lukin, A. V. Gorshkov, H. P. Büchler. Scattering resonances and bound states for strongly interacting Rydberg polaritons. Phys. Rev. A, 90, 053804(2014).
[17] M. F. Maghrebi, M. J. Gullans, P. Bienias, S. Choi, I. Martin, O. Firstenberg, M. D. Lukin, H. P. Büchler, A. V. Gorshkov. Coulomb bound states of strongly interacting photons. Phys. Rev. Lett., 115, 123601(2015).
[18] A. González-Tudela, V. Paulisch, D. E. Chang, H. J. Kimble, J. I. Cirac. Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett., 115, 163603(2015).
[19] J. S. Douglas, T. Caneva, D. E. Chang. Photon molecules in atomic gases trapped near photonic crystal waveguides. Phys. Rev. X, 6, 031017(2016).
[20] A. González-Tudela, V. Paulisch, H. J. Kimble, J. I. Cirac. Efficient multiphoton generation in waveguide quantum electrodynamics. Phys. Rev. Lett., 118, 213601(2017).
[21] B. A. Moores, L. R. Sletten, J. J. Viennot, K. W. Lehnert. Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett., 120, 227701(2018).
[22] L. R. Sletten, B. A. Moores, J. J. Viennot, K. W. Lehnert. Resolving phonon Fock states in a multimode cavity with a double-slit qubit. Phys. Rev. X, 9, 021056(2019).
[23] P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, R. Van Laer, A. H. Safavi-Naeini. Resolving the energy levels of a nanomechanical oscillator. Nature, 571, 537-540(2019).
[24] R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, P. J. Leek. Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun., 8, 975(2017).
[25] Y. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, R. J. Schoelkopf. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature, 563, 666-670(2018).
[26] M. Arndt, K. Hornberger. Testing the limits of quantum mechanical superpositions. Nat. Phys., 10, 271-277(2014).
[27] M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, J. I. Cirac. Universal quantum transducers based on surface acoustic waves. Phys. Rev. X, 5, 031031(2015).
[28] A. Noguchi, R. Yamazaki, Y. Tabuchi, Y. Nakamura. Qubit-assisted transduction for a detection of surface acoustic waves near the quantum limit. Phys. Rev. Lett., 119, 180505(2017).
[29] P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill, A. H. Safavi-Naeini. Coupling a superconducting quantum circuit to a phononic crystal defect cavity. Phys. Rev. X, 8, 031007(2018).
[30] Q. Bin, X.-Y. Lü, F. P. Laussy, F. Nori, Y. Wu.
[31] X.-L. Dong, P.-B. Li. Multiphonon interactions between nitrogen-vacancy centers and nanomechanical resonators. Phys. Rev. A, 100, 043825(2019).
[32] S. Kolkowitz, S. Bromley, T. Bothwell, M. Wall, G. Marti, A. Koller, X. Zhang, A. Rey, J. Ye. Spin–orbit-coupled fermions in an optical lattice clock. Nature, 542, 66-70(2017).
[33] M. C. Beeler, R. A. Williams, K. Jiménez-Garca, L. J. LeBlanc, A. R. Perry, I. B. Spielman. The spin hall effect in a quantum gas. Nature, 498, 201-204(2013).
[34] D. Palima, C. A. Alonzo, P. J. Rodrigo, J. Glückstad. Generalized phase contrast matched to Gaussian illumination. Opt. Express, 15, 11971-11977(2007).
[35] M. Pasienski, B. DeMarco. A high-accuracy algorithm for designing arbitrary holographic atom traps. Opt. Express, 16, 2176-2190(2008).
[36] J. G. Lee, B. J. McIlvain, C. Lobb, W. Hill. Analogs of basic electronic circuit elements in a free-space atom chip. Sci. Rep., 3, 1034(2013).
[37] A. L. Gaunt, Z. Hadzibabic. Robust digital holography for ultracold atom trapping. Sci. Rep., 2, 721(2012).
[38] Y. Deng, J. Cheng, H. Jing, C.-P. Sun, S. Yi. Spin-orbit-coupled dipolar Bose-Einstein condensates. Phys. Rev. Lett., 108, 125301(2012).
[39] Y.-J. Lin, K. Jiménez-Garca, I. B. Spielman. Spin-orbit-coupled Bose-Einstein condensates. Nature, 471, 83-86(2011).
[40] I. I. Rabi. On the process of space quantization. Phys. Rev., 49, 324-328(1936).
[41] M.-J. Hwang, R. Puebla, M. B. Plenio. Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett., 115, 180404(2015).
[42] M. Liu, S. Chesi, Z.-J. Ying, X. Chen, H.-G. Luo, H.-Q. Lin. Universal scaling and critical exponents of the anisotropic quantum Rabi model. Phys. Rev. Lett., 119, 220601(2017).
[43] D. Lv, S. An, Z. Liu, J.-N. Zhang, J. S. Pedernales, L. Lamata, E. Solano, K. Kim. Quantum simulation of the quantum Rabi model in a trapped ion. Phys. Rev. X, 8, 021027(2018).
[44] V. Galitski, I. B. Spielman. Spin–orbit coupling in quantum gases. Nature, 494, 49-54(2013).
[45] D. F. Walls, G. J. Milburn. Quantum Optics(2007).
[46] F. Beaudoin, J. M. Gambetta, A. Blais. Dissipation and ultrastrong coupling in circuit QED. Phys. Rev. A, 84, 043832(2011).
[47] A. Ridolfo, M. Leib, S. Savasta, M. J. Hartmann. Photon blockade in the ultrastrong coupling regime. Phys. Rev. Lett., 109, 193602(2012).
[48] R. J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130, 2529-2539(1963).
[49] H. J. Carmichael. Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations(2013).
[50] F. Wolf, C. Shi, J. C. Heip, M. Gessner, L. Pezzè, A. Smerzi, M. Schulte, K. Hammerer, P. O. Schmidt. Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions. Nat. Commun., 10, 2929(2019).
[51] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87-90(2005).
[52] C. Hamsen, K. N. Tolazzi, T. Wilk, G. Rempe. Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett., 118, 133604(2017).
[53] B. R. Mollow. Power spectrum of light scattered by two-level systems. Phys. Rev., 188, 1969-1975(1969).
[54] A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, J.-P. Poizat. Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Phys. Rev. B, 81, 245419(2010).
[55] D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, J. Vučković. Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Phys. Rev. Lett., 104, 073904(2010).
[56] D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, J. Vučković. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett., 108, 093604(2012).
[57] V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, H. Wang. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett., 107, 133601(2011).
[58] S. Zahedpour, J. K. Wahlstrand, H. M. Milchberg. Quantum control of molecular gas hydrodynamics. Phys. Rev. Lett., 112, 143601(2014).
[59] C. Hamner, C. Qu, Y. Zhang, J. Chang, M. Gong, C. Zhang, P. Engels. Dicke-type phase transition in a spin-orbit-coupled Bose–Einstein condensate. Nat. Commun., 5, 4023(2014).
[60] M. A. Norcia, J. R. K. Cline, J. A. Muniz, J. M. Robinson, R. B. Hutson, A. Goban, G. E. Marti, J. Ye, J. K. Thompson. Frequency measurements of superradiance from the strontium clock transition. Phys. Rev. X, 8, 021036(2018).
[61] N. Q. Burdick, Y. Tang, B. L. Lev. Long-lived spin-orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X, 6, 031022(2016).
[62] X. Zhou, J.-S. Pan, Z.-X. Liu, W. Zhang, W. Yi, G. Chen, S. Jia. Symmetry-protected topological states for interacting fermions in alkaline-earth-like atoms. Phys. Rev. Lett., 119, 185701(2017).
[63] F. Iemini, L. Mazza, L. Fallani, P. Zoller, R. Fazio, M. Dalmonte. Majorana quasiparticles protected by F2 angular momentum conservation. Phys. Rev. Lett., 118, 200404(2017).
[64] P.-B. Li, Y. Zhou, W.-B. Gao, F. Nori. Enhancing spin-phonon and spin-spin interactions using linear resources in a hybrid quantum system. Phys. Rev. Lett., 125, 153602(2020).
[65] Y. Zhou, B. Li, X.-X. Li, F.-L. Li, P.-B. Li. Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions. Phys. Rev. A, 98, 052346(2018).
[66] M. J. McDonnell, J. P. Home, D. M. Lucas, G. Imreh, B. C. Keitch, D. J. Szwer, N. R. Thomas, S. C. Webster, D. N. Stacey, A. M. Steane. Long-lived mesoscopic entanglement outside the Lamb-Dicke regime. Phys. Rev. Lett., 98, 063603(2007).
[67] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, D. J. Wineland. Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett., 76, 1796-1799(1996).
[68] M. G. Kozlov, M. S. Safronova, J. R. C. López-Urrutia, P. O. Schmidt. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys., 90, 045005(2018).
Get Citation
Copy Citation Text
Yuangang Deng, Tao Shi, Su Yi, "Motional n-phonon bundle states of a trapped atom with clock transitions," Photonics Res. 9, 1289 (2021)
Category: Quantum Optics
Received: Apr. 8, 2021
Accepted: May. 1, 2021
Published Online: Jun. 21, 2021
The Author Email: Yuangang Deng (dengyg3@mail.sysu.edu.cn), Su Yi (syi@itp.ac.cn)