Starting from the work of Allen et al.[1], the optical vortices which carry orbital angular momentum (OAM), or light beams with spatial phase dependence of exp(i
High Power Laser Science and Engineering, Volume. 9, Issue 4, 04000e65(2021)
Coherent optical vortex generation with multiple topological charges based on a seeded free electron laser
To generate optical vortex with multiple topological charges, a simple scheme based on the phase mask shaping technique is proposed and applied in a seeded free electron laser. With a tailored phase mask, an extreme-ultraviolet (EUV) vortex with multiple topological charges can be produced. To prove the feasibility of this method, an eight-step phase mask is designed to shape the seed laser. The simulation results demonstrate that 100-MW, fully coherent EUV vortex pulses with topological charge 2 can be generated based on the proposed technique. We have also demonstrated the possibility of generating higher topological charges by using a phase mask with more steps.
1 Introduction
Starting from the work of Allen et al.[1], the optical vortices which carry orbital angular momentum (OAM), or light beams with spatial phase dependence of exp(i
To generate short-wavelength vortex beams, some schemes based on free electron lasers (FELs) have been proposed. As exceptionally bright, coherent photon sources for short-wavelength radiation, FELs[14] provide scientists with formidable instruments for exploring the structural characteristics of materials at the atomic scale. However, the transverse profiles of radiation from the undulator are limited to a fundamental Gaussian-like mode with no azimuthal phase variation. For the creation of vortex beams, one method based on helical undulator harmonic radiation was proposed[15]. The method is based on self-amplified spontaneous emission (SASE)[16] principle, which suffers from the limited temporal coherence as the amplification starts from random noise in the e-beam longitudinal distribution. To achieve fully temporally coherent radiation[17], seeded FELs schemes relying on e-beam phase space manipulation on the optical wavelength scale, such as high-gain harmonic generation (HGHG)[18] and echo-enabled harmonic generation (EEHG)[19], have been proposed and experimentally demonstrated[20,21]. To produce coherent optical vortex, these seeded FEL schemes have been modified. For the HGHG scheme, a Gaussian seed laser is superimposed on the electron beam in a helical undulator[22]. The helically bunched beam can produce optical vortex at the fundamental frequency of the seed in the radiator. This method can be used as a mode converter which requires a coherent EUV or X-ray input signal. Ribič and his coworkers modified the HGHG scheme, which used a four staircase-like-phase mask to modify the seed laser[23]. However, the method can only generate FEL vortex light with topological charge 1. For some special pump-probe experiments[6], vortex beams with multiple topological charges are needed. For the EEHG scheme, Hemsing and his collaborators proposed the echo-enabled X-ray vortex-generation scheme where at least one vortex seed laser is used to produce corkscrew microbunching[24]. However, this scheme is more complex and has not been proved experimentally.
To produce vortex beams with multiple topological charges, we propose a simple method based on using the phase mask shaping technique. The topological charge of vortex light can be controlled by tailoring the structure of the phase mask. In this paper, to prove the feasibility of this method, an eight-step phase mask is designed to shape the seed laser. The simulation result demonstrates that 100-MW, fully coherent EUV vortex pulses with topological charge 2 can be generated based on this phase mask shaping technique. We also show the possibility of generating vortex light with higher topological charges by using a phase mask with more steps. The vortex generation scheme based on HGHG can be straightforwardly implemented at the existing seeded FEL user facilities such as Shanghai Soft X-Ray Free Electron Laser (SXFEL)[25] and FERMI[21] without the need for significant machine upgrades.
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
The remainder of this paper is organized as follows. In Section 2, the principle of the proposed scheme is illustrated. In Section 3, the optical design of this scheme is shown. In Section 4, the interaction between the electron beam and the optical field is investigated by theory and simulation. In Section 5, we study the FEL performance in the radiator. In Section 6, we present some results and considerations for generating the vortex light with higher topological charges. Finally, we give a discussion in Section 7.
2 Principle
The schematic layout of the proposed technique is shown in Figure 1. This scheme is based on the HGHG setup. First, the electron beam interacts with the seed laser in the modulator. The seed properties such as the transverse phase dependence are imprinted onto the electron beam. When the electron beam passes through the chicane, the energy modulation is converted into a coherent density modulation rich in harmonic content. The second undulator is tuned to a higher harmonic of the seed laser, causing the electron beam to emit coherent radiation at a shorter wavelength.
Figure 1.Scheme to generate an optical vortex with multiple topological charges based on an HGHG setup.
The relative transverse phase changes of the seed laser after passing through the phase mask as shown in Figure 1 can be represented as a matrix:
Each number in this matrix represents the phase value at each interval
After the electron beam passes through the dispersion section, the above energy modulation is converted into a coherent microbunching. The transverse phase of microbunching can be represented as in the matrix in Equation (1). According to the frequency up-conversion theory of HGHG[18], the transverse phase structure of the electron microbunching at the radiator entrance can be interpreted as the following matrix:
where
and
It should be noted that after up-conversion, the phase jump of each step in the microbunching is 0 or
and
For the case of odd
3 The principle of phase mask shaping
The optical setup for the seed laser in the proposed scheme is shown in Figure 2, where the seed laser is focused through a lens immediately after passing through the phase mask and finally injected into the undulator to interact with the electron beam.
Figure 2.Optical setup in this scheme.
The transport processes of the seed laser can be studied with the wave optics[26]. The optical field after the phase mask is
Here
Equation (8) could be mathematically simplified to
The above formula shows that the complex optical field in the focal plane is the Fourier transform of the optical field through phase mask and the complex optical field can remain the eight-step structure in the focal plane. The above equations are written into a program to model and analyze the optical field propagation process. The complex optical field in the focal plane is shown in Figure 3. The transverse phase of the optical field presents a distinct eight-step structure.
Figure 3.(a) Transverse intensity and (b) corresponding phase of seed laser in the focal plane.
In the proposed scheme, the focal plane of the lens is set to the middle of the modulator as shown in Figure 2. According to the propagation theory of wave optics, the optical field distribution after transverse shaping to a certain place is related to the focal length of the previous lens. In addition, the lens can suppress the divergence of the light field near the focal plane. Here, a lens with long focal length exceeding 20 m and a short modulator with length of 50 cm are chosen to maintain the eight-step structure of the laser beam in the modulator.
4 Interaction between the electron beam and the optical field
A three-dimensional algorithm[27,28], which is built based on the fundamental basis of electrodynamics, is modified for simulating the laser–beam interaction in the modulator. The magnetic field distribution of the planar undulator in the y direction can be written as
where
and
where
and
where
The energy exchange between the electrons and the laser field in the undulator can be represented as
Parameters of the Shanghai Soft X-Ray Free Electron Laser User Facility (SXFEL-UF) are used here for the simulation, as summarized in Table 1. The seed laser originates from a commercial Ti:sapphire laser system, which can provide laser pulses with pulse energy up to 10 mJ at 800 nm. A third harmonic generation (THG) is employed to convert the laser to 266 nm. Even with a conversion efficiency of
Figure 4.(a) Longitudinal phase space of the electron beam after the modulator. The vertical axis
|
Unlike the common sinusoidal energy modulation of an electron beam, there are several discrete sinusoidal modulations in an optical wavelength with phase delays between them. As shown in Figure 1, the electron beam interacts with the seed laser field which has typical transverse phase structure in the modulator. The seed properties such as the transverse phase dependence are imprinted on the electron beam phase space. Then the electron beam passes through the dispersion section for density modulation where different energy electrons travel different lengths. As a result of this process, the microbunching structure in electron beam is created. Considering the transverse structure of the microbunching, the local bunching factor can be calculated as[23]
Here,
5 FEL performance
The FEL radiation is simulated with the three-dimensional time-dependent FEL simulation code Genesis 1.3[29]. The radiator is resonant at the seventh harmonic of the seed laser, which is 38 nm. The microbunched electron beam as shown in Figure 4(b) is sent into the radiator with proper lattice arrangement for FEL simulation. As illustrated in Figure 5(a), the coherent radiation produced by the modulated electron beam retains the eight-step structure at the radiator entrance. Consequently, the evolution of the radiation profile is primarily governed by the diffraction and linear field amplification. Then, the radiation profile gradually evolves from an eight-step structure to a ring-like distribution with helical transverse phase. At the radiator exit, the radiation profile changes to a typical vortex light profile with topological charge 2 and the radiation power is saturated. To illustrate the evolution of electron beam in the radiator, the helical bunching factor has been illustrated in Figure 5(b) according to the approaches mentioned in the paper[24]. The electron bunching factor at the azimuthal mode
Figure 5.(a) Evolution of the power along the radiator. (b) Evolution of the bunching factor along the radiator. (c) The longitudinal power and (d) its spectrum at the radiator exit.
where
where
Figure 6.(a) The transverse intensity and (b) its corresponding phase of radiation at the radiator exit.
6 Generation of vortex light with higher topological charges
The phase mask shaping technique is also suitable for the generation of vortex light with higher topological charges. Here we take a phase plate with 12 steps as an example to show the generation of vortex beam with topological charge 3 at 38 nm. Simulation results are given in Figure 7. By using an undulator segment with length of 4 m, vortex radiation pulse with peak power over 10 MW can be generated. The transverse phase distribution has the typical characteristics of vortex light with topological charge 3, as shown in Figure 7(b). However, it should be noted that the vortex light with topological charge 3 can hardly be amplified to saturation due to the weaker transverse coupling between the electron beam and the vortex light with greater emission angle[24].
Figure 7.(a) Evolution of the power along the radiator. (b) The transverse phase of radiation at the radiator exit.
7 Discussion and conclusion
A novel technique based on phase mask shaping has been proposed in this paper to generate optical vortex with multiple topological charges in seeded FELs. Through a fine transverse manipulation of the seed laser, a multi-dimensional modulation of the electron beam can be achieved to generate the optical vortex with multiple topological charges. Therefore, the spatial–temporal properties of the radiation generated in an undulator can be manipulated. In this paper, to produce optical vortex with multiple topological charges, an eight-step phase mask scheme has been devised for the transverse shaping of the seed laser. The final transverse shaping of microbunching can also be changed due to the HGHG principle. The simulation results show that 100-MW, fully coherent EUV vortex pulses with topological charge 2 can be generated based on the proposed scheme. The topological charge of vortex light can be controlled by tailoring the structure of the phase mask. The simulation results also show the EUV vortex with topological charge 3 can be produced with sufficient power. These results show that the proposed scheme is feasible to generate EUV vortex light with multiple topological charges. We found in the simulations that the generated vortex light with topological charges higher than 2 cannot be effectively amplified to saturation due to the weaker transverse coupling between the electron beam and the vortex light with greater emission angle in the undulator. Further studies on this topic are still ongoing. The principle-proving experiments of generating optical vortex based on four stairs and eight-step phase mask are under preparation at the SXFEL.
[1] L. Allen, M. W. Beijersbergen, R. Spreeuw, J. Woerdman. Phys. Rev., 45, 8185(1992).
[2] H. He, M. Friese, N. Heckenberg, H. Rubinsztein-Dunlop. Phys. Rev. Lett., 75, 826(1995).
[3] M. P. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Science, 341, 537(2013).
[4] A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte. Phys. Rev. Lett., 94, 233902(2005).
[5] K. Liu, Y. Cheng, Y. Gao, X. Li, Y. Qin, H. Wang. Appl. Phys. Lett., 110, 164102(2017).
[6] K. Shigematsu, K. Yamane, R. Morita, Y. Toda. Phys. Rev. B, 93, 045205(2016).
[7] M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger. New J. Phys., 16, 1088(2014).
[8] H. Fujita, M. Sato. Phys. Rev. B, 95, 054421(2017).
[9] J. Wätzel, Y. Pavlyukh, A. Schäffer, J. Berakdar. Carbon, 99, 439(2016).
[10] A. Picón, A. Benseny, J. Mompart, J. V. de Aldana, L. Plaja, G. F. Calvo, L. Roso. New J. Phys., 12, 083053(2010).
[11] V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, J. Turunen. J. Opt. Soc. Am. A, 22, 849(2005).
[12] M. W. Beijersbergen, L. Allen, H. van der Veen, J. Woerdman. Opt. Commun., 96, 123(1993).
[13] B. Terhalle, A. Langner, B. Päivänranta, V. A. Guzenko, C. David, Y. Ekinci. Opt. Lett., 36, 4143(2011).
[14] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker. Nat. Photonics, 4, 641(2010).
[15] H.-P. Geng, J.-H. Chen, Z.-T. Zhao. Nucl. Sci. Tech., 31, 88(2020).
[16] K.-J. Kim. Phys. Rev. Lett., 57, 1871(1986).
[17] C. Feng, H.-X. Deng. Nucl. Sci. Tech., 29, 160(2018).
[18] L. H. Yu. Phys. Rev., 44, 5178(1991).
[19] G. Stupakov. Phys. Rev. Lett., 102, 074801(2009).
[20] C. Feng, H. Deng, M. Zhang, X. Wang, S. Chen, T. Liu, K. Zhou, D. Gu, Z. Wang, Z. Jiang. Phys. Rev. Accel. Beams, 22, 050703(2019).
[21] P. R. Ribič, A. Abrami, L. Badano, M. Bossi, H.-H. Braun, N. Bruchon, F. Capotondi, D. Castronovo, M. Cautero, P. Cinquegrana. Nat. Photonics, 13, 555(2019).
[22] E. Hemsing, A. Knyazik, M. Dunning, D. Xiang, A. Marinelli, C. Hast, J. B. Rosenzweig. Nat. Phys., 9, 549(2013).
[23] P. R. Ribič, D. Gauthier, G. De Ninno. Phys. Rev. Lett., 112, 203602(2014).
[24] E. Hemsing, A. Marinelli. Phys. Rev. Lett., 109, 224801(2012).
[25] Z. Zhao, D. Wang, Q. Gu, L. Yin, M. Gu, Y. Leng, B. Liu. Appl. Sci., 7, 607(2017).
[26] J. W. Goodman. Introduction to Fourier Optics(2005).
[27] X. Wang, C. Feng, C.-Y. Tsai, L. Zeng, Z. Zhao. Phys. Rev. Accel. Beams, 22, 070701(2019).
[28] L. Zeng, C. Feng, X. Wang, K. Zhang, Z. Qi, Z. Zhao. Photonics, 7, 117(2020).
[29] S. Reiche. Nucl. Instrum. Methods Phys. Res. A, 429, 243(1999).
Get Citation
Copy Citation Text
Hao Sun, Xiaofan Wang, Chao Feng, Lingjun Tu, Weijie Fan, Bo Liu. Coherent optical vortex generation with multiple topological charges based on a seeded free electron laser[J]. High Power Laser Science and Engineering, 2021, 9(4): 04000e65
Special Issue: XFELS
Received: Aug. 1, 2021
Accepted: Nov. 19, 2021
Published Online: Dec. 30, 2021
The Author Email: Xiaofan Wang (wangxf@mail.iasf.ac.cn), Chao Feng (fengchao@zjlab.org.cn), Bo Liu (liubo@zjlab.org.cn)