A diode-pumped pulse laser for
Chinese Optics Letters, Volume. 17, Issue 2, 020003(2019)
Active–passive pulse laser based on gold nanobipyramids at 1.3 μm wavelength
Two-dimensional (2D) materials have attracted intense attention in photonics and optoelectronics for their excellent nonlinear characteristics and are applied for the generation of laser pulses. Here, an active–passive
A diode-pumped pulse laser for
DQS technologies at the output wavelength of 940 nm,
In this Letter, the diode-pumped DQS laser with the AOM and Au-NBPs is first, to the best of our knowledge, realized. The pulse characteristics of singly PQS and DQS lasers are measured. A pulse laser with stable repetition rate and short pulse width is obtained in the DQS laser, suggesting that the pulse qualities are improved relative to the singly PQS laser.
Sign up for Chinese Optics Letters TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
The Au-NBPs were prepared through seed-mediated grown methods, as shown in Fig.
Figure 1.(a) Fabrication process of Au-NBPs. TEM image with a scale of (b) 2000 nm and (c) 100 nm. (d) Absorption spectrum of Au-NBPs.
We established a V-shaped folded cavity with a length of 203 mm to generate short pulse lasers, as shown in Fig.
Figure 2.Experimental setup of DQS
Firstly, we carefully adjusted the cavity to obtain maximum continuous wave power, insuring that the V-shaped cavity kept optimum conditions. Then, after inserting the near-infrared quartz plate coated with Au-NBPs, a singly PQS laser is realized by finely tuning the position of the quartz plate. In Fig.
Figure 3.(a) Average output power and (b) pulse width and repetition rate versus absorbed pump power.
After finishing the PQS laser, the DQS laser is realized by inserting the AOM. Figure
Figure 4.(a) Average output power and (b) pulse width versus absorbed pump power at the DQS laser. Inset, output spectrum.
Figure 5.Peak power versus absorbed pump power.
As mentioned above, the pulse width is compressed in the DQS laser when compared with the single PQS laser. In order to describe the degree of the narrowing of the pulse width, a compression ratio
|
The pulse profiles and pulse trains for PQS and DQS lasers are demonstrated in Fig.
Figure 6.Temporal pulse profiles and pulse trains for (a) singly PQS laser and DQS laser at the modulation frequencies of (b) 10 kHz, (c) 20 kHz, and (d) 30 kHz.
In conclusion, the
[1] U. Keller, J. A. Valdmanis, M. C. Nuss, A. M. Johnson. IEEE J. Quantum Electron., 24, 427(1988).
[2] R. Fluck, G. Zhang, U. Keller, K. J. Weingarten, M. Moser. Opt. Lett., 21, 1378(1993).
[3] K. W. Su, H. C. Lai, A. Li, Y. F. Chen, K. E. Huang. Opt. Lett., 30, 1482(2005).
[4] V. Liverini, S. Schön, R. Grange, M. Haiml, S. C. Zeller, U. Keller. Appl. Phys. Lett., 84, 4002(2004).
[5] J. Xu, Y. Yang, J. He, B. Zhang, X. Yang, S. Liu, B. Zhang, H. Yang. IEEE J. Quantum Electron., 48, 622(2012).
[6] W. Cai, S. Jiang, S. Xu, Y. Li, J. Liu, C. Li, L. Zheng, L. Su, J. Xu. Opt. Laser Technol., 65, 1(2015).
[7] F. Zhang, J. Liu, W. Li, B. Mei, D. Jiang, X. Qian, L. Su. Opt. Eng., 55, 106114(2016).
[8] L. J. Li, B. Q. Yao, C. W. Song, Y. Z. Wang, Z. G. Wang. Laser Phys. Lett., 6, 102(2009).
[9] A. F. El-Sherif, T. A. King. Opt. Commun., 218, 337(2003).
[10] C. Li, M. Fan, J. Liu, L. Su, D. Jiang, X. Qian, J. Xu. Opt. Laser Technol., 69, 140(2015).
[11] Y. Wu, C. Zhang, J. Liu, H. Zhang, J. Yang, J. Liu. Opt. Laser Technol., 97, 268(2017).
[12] Y. Zhao, Z. Wang, H. Yu, L. Guo, L. Chen, S. Zhuang, X. Sun, D. H. Hu, X. Xu. Chin. Opt. Lett., 9, 081401(2011).
[13] M. Lin, Q. Peng, W. Hou, X. Fan, J. Liu. Opt. Laser Technol., 109, 90(2019).
[14] J. Ma, S. B. Lu, Z. N. Guo, X. D. Xu, H. Zhang, D. Y. Tang, D. Y. Fan. Opt. Express, 23, 22643(2015).
[15] J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu. Sci. Rep., 6, 30361(2016).
[16] C. Luan, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, C. Liu, H. Chu, J. Qiao, L. Zheng, X. Xu, J. Xu. Laser Phys. Lett., 13, 025006(2016).
[17] D. Hull. Appl. Opt., 5, 1342(1966).
[18] C. Luan, K. J. Yang, J. Zhao, S. Z. Zhao, W. C. Qiao, T. Li, T. L. Feng, C. Liu, J. P. Qiao, L. H. Zheng, J. Xu, Q. G. Wang, L. B. Su. Appl. Opt., 54, 8024(2015).
[19] T. W. Chen, K. C. Chang, J. C. Chen, J. H. Lin, M. D. Wei. Appl. Opt., 53, 3459(2014).
[20] D. Wang, J. Zhao, K. Yang, S. Zhao, T. Li, D. Li, G. Li, W. Qiao. Opt. Mater., 72, 464(2017).
[21] G. Q. Li, S. Z. Zhao, K. J. Yang, W. Wu. Jpn. J. Appl. Phys., 44, 3017(2005).
[22] B. Zhao, Y. Chen, B. Yao, Z. Cui, S. Bai, H. Yang, X. Duan, J. Li, Y. Shen, C. Qian, J. Yuan, T. Dai, C. Li, Y. Pan. Opt. Eng., 55, 116116(2016).
[23] Y. Li, S. Zhao, C. Feng, K. Cheng. Laser Phys., 22, 693(2012).
[24] D. Wang, J. Zhao, K. Yang, S. Zhao, T. Li, D. Li, G. Li, W. Qiao. Opt. Quantum Electron., 48, 553(2016).
[25] B. Bai, Y. Bai, D. Li, Y. Sun, J. Li, J. Bai. Chin. Opt. Lett., 16, 031402(2018).
[26] C. Wang, J. Liu, Y. Zu, X. Fan, J. Liu. Opt. Quantum Electron., 50, 122(2018).
[27] C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, L. Su. Opt. Laser Technol., 103, 89(2018).
[28] J. Liu, Y. Wang, Z. Qu, X. Fan. Opt. Laser Technol., 44, 960(2012).
[29] Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, H. Zhang. Chin. Opt. Lett., 16, 020018(2018).
[30] H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, Q. Bao. ACS Photon., 2, 832(2015).
[31] H. Wan, W. Cai, F. Wang, S. Jiang, S. Xu, J. Liu. Opt. Quantum Electron., 48, 11(2015).
[32] M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, A. Sennaroglu. Opt. Lett., 38, 341(2013).
[33] H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, P. Sheng. Appl. Phys. Lett., 70, 1(1997).
[34] S. Yamashita. J. Lightwave Technol., 30, 427(2012).
[35] Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, W. Qin. Appl. Phys. Lett., 103, 041105(2013).
[36] T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, W. Qin. Appl. Phys. Lett., 101, 151122(2012).
[37] Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, W. P. Qin. Laser Phys. Lett., 11, 035102(2014).
[38] D. Fan, C. Mou, X. Bai, S. Wang, N. Chen, X. Zeng. Opt. Express, 22, 18537(2014).
[39] H. Zhang, J. Liu. Opt. Lett., 41, 1150(2016).
[40] H. Zhang, B. Li, J. Liu. Appl. Opt., 55, 7351(2016).
[41] Z. Chu, H. Zhang, Y. Wu, C. Zhang, J. Liu, J. Yang. Opt. Commun., 406, 209(2018).
Get Citation
Copy Citation Text
Cong Wang, Qianqian Peng, Linlin Xin, Jie Liu, "Active–passive pulse laser based on gold nanobipyramids at 1.3 μm wavelength," Chin. Opt. Lett. 17, 020003 (2019)
Special Issue: EXTRAORDINARY 2D MATERIALS BASED NANOPHOTONICS
Received: Oct. 24, 2018
Accepted: Nov. 29, 2018
Published Online: Feb. 14, 2019
The Author Email: Linlin Xin (xinll158@sina.com), Jie Liu (jieliu@sdnu.edu.cn)