[1] D. Heiss. Circling exceptional points. Nat. Phys., 12, 823-824(2016).
[2] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).
[3] M. A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).
[4] S. K. Ozdemir, S. Rotter, F. Nori, L. Yang. Parity-time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).
[5] T. Kato. Perturbation Theory of Linear Operators(1966).
[6] C. Dembowski, H. Graf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, A. Richter. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 86, 787-790(2001).
[7] S. Bittner, B. Dietz, U. Gunther, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schafer. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett., 108, 024101(2012).
[8] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).
[9] S. B. Lee, J. Yang, S. Moon, S. Y. Lee, J. B. Shim, S. W. Kim, J. H. Lee, K. An. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 103, 134101(2009).
[10] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schoberl, H. E. Tureci, G. Strasser, K. Unterrainer, S. Rotter. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun., 5, 4034(2014).
[11] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, M. Soljacic. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).
[12] Z. Lin, A. Pick, M. Loncar, A. W. Rodriguez. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett., 117, 107402(2016).
[13] W. Chen, S. Kaya Ozdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).
[14] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).
[15] T. Goldzak, A. A. Mailybaev, N. Moiseyev. Light stops at exceptional points. Phys. Rev. Lett., 120, 013901(2018).
[16] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljacic, B. Zhen. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science, 359, 1009-1012(2018).
[17] H. Zhao, Z. Chen, R. Zhao, L. Feng. Exceptional point engineered glass slide for microscopic thermal mapping. Nat. Commun., 9, 1764(2018).
[18] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators. Nat. Commun., 10, 832(2019).
[19] M. A. Quiroz-Juárez, A. Perez-Leija, K. Tschernig, B. M. Rodríguez-Lara, O. S. Magaña-Loaiza, K. Busch, Y. N. Joglekar, R. D. J. León-Montiel. Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection. Photon. Res., 7, 862-867(2019).
[20] J. H. Park, A. Ndao, W. Cai, L. Y. Hsu, A. Kodigala, T. Lepetit, Y. H. Lo, B. Kante. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 16, 462-468(2020).
[21] C. Q. Wang, X. F. Jiang, G. M. Zhao, M. Z. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).
[22] T. Wu, W. Zhang, H. Zhang, S. Hou, G. Chen, R. Liu, C. Lu, J. Li, R. Wang, P. Duan, J. Li, B. Wang, L. Shi, J. Zi, X. Zhang. Vector exceptional points with strong superchiral fields. Phys. Rev. Lett., 124, 083901(2020).
[23] A. Bergman, R. Duggan, K. Sharma, M. Tur, A. Zadok, A. Alu. Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. Nat. Commun., 12, 486(2021).
[24] L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, P. Xue. Observation of non-Bloch parity-time symmetry and exceptional points. Phys. Rev. Lett., 126, 230402(2021).
[25] W. Zhang, H. Chiang, T. Wen, L. Ye, H. Lin, H. Xu, Q. Gong, G. Lu. Exotic coupling between plasmonic nanoparticles through geometric configurations. J. Lightwave Technol., 39, 6646-6652(2021).
[26] C. Wang, W. R. Sweeney, A. D. Stone, L. Yang. Coherent perfect absorption at an exceptional point. Science, 373, 1261-1265(2021).
[27] G. Q. Qin, R. R. Xie, H. Zhang, Y. Q. Hu, M. Wang, G. Q. Li, H. T. Xu, F. C. Lei, D. Ruan, G. L. Long. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photon. Rev., 15, 2000569(2021).
[28] H. Xu, D. Mason, L. Jiang, J. G. Harris. Topological energy transfer in an optomechanical system with exceptional points. Nature, 537, 80-83(2016).
[29] J. Zhang, B. Peng, S. K. Ozdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).
[30] Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, K. An. Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett., 104, 153601(2010).
[31] L. Ding, K. Shi, Q. Zhang, D. Shen, X. Zhang, W. Zhang. Experimental determination of PT-symmetric exceptional points in a single trapped ion. Phys. Rev. Lett., 126, 083604(2021).
[32] T. Stehmann, W. D. Heiss, F. G. Scholtz. “Observation of exceptional points in electronic circuits. J. Phys. A, 37, 7813-7819(2004).
[33] M. Sakhdari, M. Hajizadegan, Q. Zhong, D. N. Christodoulides, R. El-Ganainy, P. Y. Chen. Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett., 123, 193901(2019).
[34] L. J. Fernandez-Alcazar, H. Li, F. Ellis, A. Alu, T. Kottos. Robust scattered fields from adiabatically driven targets around exceptional points. Phys. Rev. Lett., 124, 133905(2020).
[35] Z. Guo, T. Zhang, J. Song, H. Jiang, H. Chen. Sensitivity of topological edge states in a non-Hermitian dimer chain. Photon. Res., 9, 574-582(2021).
[36] S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 121, 086803(2018).
[37] K. Kawabata, T. Bessho, M. Sato. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 123, 066405(2019).
[38] W. Tang, X. Jiang, K. Ding, Y. X. Xiao, Z. Q. Zhang, C. T. Chan, G. Ma. Exceptional nexus with a hybrid topological invariant. Science, 370, 1077-1080(2020).
[39] T. Gao, E. Estrecho, K. Y. Bliokh, T. C. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 526, 554-558(2015).
[40] D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, J. Q. You. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 8, 1368(2017).
[41] A. Ben-Asher, D. Simsa, T. Uhlirova, M. Sindelka, N. Moiseyev. Laser control of resonance tunneling via an exceptional point. Phys. Rev. Lett., 124, 253202(2020).
[42] W. D. Heiss. Phases of wave functions and level repulsion. Eur. Phys. J. D, 7, 1-4(1999).
[43] M. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 54, 1039-1047(2004).
[44] R. Lefebvre, O. Atabek, M. Sindelka, N. Moiseyev. Resonance coalescence in molecular photodissociation. Phys. Rev. Lett., 103, 123003(2009).
[45] R. Uzdin, A. Mailybaev, N. Moiseyev. “On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A, 44, 435302(2011).
[46] S. W. Kim. Braid operation of exceptional points. Fortschr. Phys., 61, 155-161(2013).
[47] P. R. Kapralova-Zdanska, N. Moiseyev. Helium in chirped laser fields as a time-asymmetric atomic switch. J. Chem. Phys., 141, 014307(2014).
[48] M. Hamamda, P. Pillet, H. Lignier, D. Comparat. Ro-vibrational cooling of molecules and prospects. J. Phys. B, 48, 182001(2015).
[49] T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter, P. Rabl. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A, 92, 052124(2015).
[50] A. U. Hassan, B. Zhen, M. Soljacic, M. Khajavikhan, D. N. Christodoulides. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett., 118, 093002(2017).
[51] H. Xu, D. Mason, L. Jiang. Topological dynamics in an optomechanical system with highly non-degenerate modes(2017).
[52] J. Doppler, A. A. Mailybaev, J. Bohm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, S. Rotter. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76-79(2016).
[53] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, P. Berini. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun., 8, 14154(2017).
[54] J. W. Yoon, Y. Choi, C. Hahn, G. Kim, S. H. Song, K. Y. Yang, J. Y. Lee, Y. Kim, C. S. Lee, J. K. Shin, H. S. Lee, P. Berini. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature, 562, 86-90(2018).
[55] X. L. Zhang, T. Jiang, C. T. Chan. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light Sci. Appl., 8, 88(2019).
[56] A. Li, J. Dong, J. Wang, Z. Cheng, J. S. Ho, D. Zhang, J. Wen, X. L. Zhang, C. T. Chan, A. Alu, C. W. Qiu, L. Chen. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett., 125, 187403(2020).
[57] Q. Liu, S. Li, B. Wang, S. Ke, C. Qin, K. Wang, W. Liu, D. Gao, P. Berini, P. Lu. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phys. Rev. Lett., 124, 153903(2020).
[58] M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, L. Jiang. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett., 123, 180501(2019).
[59] A. Hu, W. Zhang, S. Liu, T. Wen, J. Zhao, Q. Gong, Y. Ye, G. Lu. In situ scattering of single gold nanorod coupling with monolayer transition metal dichalcogenides. Nanoscale, 11, 20734-20740(2019).
[60] J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, H. Xu. Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime. ACS Nano, 12, 10393-10402(2018).
[61] X. Li, L. Zhou, Z. Hao, Q.-Q. Wang. Plasmon-exciton coupling in complex systems. Adv. Opt. Mater., 6, 1800275(2018).
[62] S. N. Gupta, O. Bitton, T. Neuman, R. Esteban, L. Chuntonov, J. Aizpurua, G. Haran. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nat. Commun., 12, 1310(2021).
[63] M. H. Elshorbagy, A. Cuadrado, J. Alda. Plasmonic sensor based on dielectric nanoprisms. Nano. Res. Lett., 12, 580(2017).
[64] G. Lu, L. Hou, T. Zhang, J. Liu, H. Shen, C. Luo, Q. Gong. Plasmonic sensing via photoluminescence of individual gold nanorod. J. Phys. Chem. C, 116, 25509-25516(2012).