Progress in Geography, Volume. 39, Issue 7, 1126(2020)

Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin

He SUN1,2、* and Fengge SU1,2,3
Author Affiliations
  • 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
  • show less

    The gauge-based precipitation data from the National Climate Center, China Meteorological Administ-ration (CMA), Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Climate Data Record (PERSIANN-CDR), Global Precipitation Measurement (GPM), Global Land Data Assimilation System (GLDAS), High Asia Refined analysis (HAR) are compared with each other and evaluated by the precipitation data from 16 national meteorological stations during 1980-2016 in the Yarlung Zangbo River and its sub-basins. The potential utilities of these multiple precipitation datasets are then systematically evaluated as inputs for the variable infiltration capacity (VIC) macroscale land surface hydrologic model. The results show that: 1) PERSIANN-CDR and GLDAS contain the largest precipitation estimates among the six datasets with mean annual precipitation of 770-790 mm, followed by the HAR and GPM (650-660 mm), while CMA and APHRODITE contain the lowest precipitation estimates with mean annual precipitation of 460-500 mm. All the products can detect the large-scale monsoon-dominated precipitation regime in the Yarlung Zangbo River and its sub-basins with 70%-90% of annual total precipitation occurring in June-September except the GPM. 2) The general spatial pattern of the annual mean precipitation fields is roughly in agreement among the six datasets, with a decreasing trend from the southeast to the northwest in the Yarlung Zangbo River Basin except the PERSIANN-CDR and GLDAS. 3) Relative to the data from the national meteorological stations, APHRODITE, GPM, and HAR generally underestimate precipitation by 10%-30%, while PERSIANN-CDR and GLDAS overestimate precipitation from stations in upstream sub-basins by 28%-60% and underestimate precipitation from stations in downstream sub-basins by 11%-21%. 4) The six precipitation datasets cannot satisfy the needs of hydrological simulation in term of accuracy or period in the basin. 5) HAR precipitation data—output of regional climate model—show more reasonable amount and seasonal pattern among the six datasets in the upper Brahmaputra according to the inverse evaluation by VIC hydrological model.

    Tools

    Get Citation

    Copy Citation Text

    He SUN, Fengge SU. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin[J]. Progress in Geography, 2020, 39(7): 1126

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 9, 2019

    Accepted: --

    Published Online: Jan. 28, 2021

    The Author Email: SUN He (sunhe@itpcas.ac.cn)

    DOI:10.18306/dlkxjz.2020.07.006

    Topics