Since their introduction 60 years ago,1 lasers with various characteristics have developed rapidly, making them important light sources in various fields ranging from scientific research2
Advanced Photonics Nexus, Volume. 2, Issue 2, 024001(2023)
Evolution on spatial patterns of structured laser beams: from spontaneous organization to multiple transformations Author Presentation
Spatial patterns are a significant characteristic of lasers. The knowledge of spatial patterns of structured laser beams is rapidly expanding, along with the progress of studies on laser physics and technology. Particularly in the last decades, owing to the in-depth attention on structured light with multiple degrees of freedom, the research on spatial and spatiotemporal structures of laser beams has been promptly developed. Such beams have hatched various breakthroughs in many fields, including imaging, microscopy, metrology, communication, optical trapping, and quantum information processing. Here, we would like to provide an overview of the extensive research on several areas relevant to spatial patterns of structured laser beams, from spontaneous organization to multiple transformations. These include the early theory of beam pattern formation based on the Maxwell–Bloch equations, the recent eigenmodes superposition theory based on the time-averaged Helmholtz equations, the beam patterns extension of ultrafast lasers to the spatiotemporal beam structures, and the structural transformations in the nonlinear frequency conversion process of structured beams.
1 Introduction
Since their introduction 60 years ago,1 lasers with various characteristics have developed rapidly, making them important light sources in various fields ranging from scientific research2
The research on spatial patterns of structured laser beams went through two periods: the first was the spontaneous organization of patterns described by relative equations, while the second was the transformation of laser patterns on demand. Although there is no distinct separation between these two periods, it is noticeable that over the past 10 years, we have steadily gained a better understanding of how diverse laser spatial patterns originate and developed several effective techniques for producing spatial patterns on demand. Research on the formation of structured laser patterns was a main focus in physics from the 1960s to 1990s.55
For the second period of on-demand transformation of laser patterns, a number of techniques have been developed in the past 20 years to actively control the generation and transformation of laser beam patterns, giving rise to a better understanding of the spatial features of lasers. Numerous review articles on the actively controlled generation of structured laser patterns, using both intracavity oscillation40,41 and extracavity spatial modulation methods, are readily available.42
Sign up for Advanced Photonics Nexus TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
The timeline of the evolution on spatial patterns of structured laser beams is shown in Fig. 1. In this review, we highlight the developments in laser spatial pattern studies with the emphasis on the spontaneous organization of pattern formation and the multiple transformations of laser spatial patterns. The original descriptive equations in the field of pattern formation are introduced in Sec. 2, including MB, CGL, CSH, and KS equations, which are fundamental to understanding the dynamics of pattern formation. Then, the current theories in the past 20 years are further discussed in Sec. 3, namely, the eigenmode superposition theories. The superposition of transverse modes brings a new vision in understanding laser physics and recognizing the vast possibilities for structured laser beam patterns. Results are analyzed and compared, covering coherent superpositions and incoherent superpositions. Then, in Sec. 4, more potential developments are forecast in spatiotemporal laser beams, particularly in spatiotemporal mode locking in fiber lasers and spatiotemporal beams generated through pulse shapers based on SLM. In Sec. 5, various nonlinear processes of structured laser beams from external–cavity modulations to intracavity transformation are comprehensively reviewed. Finally, concluding remarks and prospects are provided in Sec. 6.
Figure 1.Timeline of the evolution on spatial patterns of structured laser beams.
2 MB Equations-Based Pattern Formation
Pattern formation is a ubiquitous phenomenon in nature and a phenomenon often found in laboratories; it was regarded as the spontaneous appearance of spatial order.150 Generally, all the patterns have something in common: they appear in spatially expanding dissipative systems, which are far from equilibrium because of some external pressure. In optical systems, the mechanism of pattern formation is the interaction among diffraction, partial resonance excitation, and nonlinearity. Diffraction is responsible for spatial coupling, which is necessary for the existence of nonuniform distribution of light fields. The role of nonlinearity is to select a specific pattern from several possible patterns. After reducing a specific model into a simpler model, a common theoretical model describing pattern formation is found to be the order parametric equation (OPE).150,151 Then, in the study of pattern formation in structured laser systems, the problem was precisely addressed through the description of optical resonators by OPE, which reflects the general characteristics of laser transverse patterns.
The exploration of the OPE of laser spatial pattern formation can be traced back to the 1970s.55
It was found that if the Maxwell equations69 and the Schrödinger equation70 are coupled to constrain the
Figure 2.Pattern formation and time-domain properties of classes A and B lasers in specific cases. (a) Laser transverse patterns are obtained by numerically solving the MB equations. Adapted from Ref. 84. (b) Laser OL patterns with different Fresnel numbers. Adapted from Ref. 85. (c) 1D nonstationary periodic (c1) and chaotic (c2) pattern in class A lasers when the pump gain is too high. Adapted from Ref. 74. (d) 2D stationary pattern in class A lasers. (e) 2D transient nonstationary pattern (e1) and time-averaged stationary pattern (e2) in class B lasers. (d)–(e) Adapted from Ref. 76. The corresponding principle between (e1) and (e2) was discussed in Ref. 77. (f) Different time-domain properties of laser pattern formation: self-modulated periodic oscillation (f1), self-modulated quasi-periodic oscillation (f2), chaotic pulsing (f3), and single-mode stable pattern (f4). Adapted from Ref. 153.
By observing the form of the MB Eq. (1), it can be found that they are similar to the Lorentz model describing hydrodynamic instability.154 The similarity between the Lorentz model and the MB equations implies that chaotic instability can happen in single-mode and homogeneous line lasers. However, the consideration of time scale excludes the complete dynamics of Eq. (1) in lasers. In the Lorentz model, the damping rates differ by 1 order of magnitude from each other. On the contrary, in most lasers, the three damping rates of the MB equations are different from each other. Then, according to the relationship among the three damping rates
For class A lasers (e.g., He–Ne, Ar, Kr, and dye):
For class B lasers (e.g., ruby, Nd, and
The first equation of Eq. (3) is the CSH dissipation equation suitable for class B lasers, where the higher-order diffusion term explains the choice of transverse modes. Comparing Eqs. (2) and (3), it can be found that in Eq. (3), the population
For class A and class B lasers, the output is stable in the absence of external disturbances. To realize an unstable operation, at least one degree of freedom needs to be added. The usual methods are as follows:155
In addition, Huyet et al.77 used multi-scale expansion to derive the CSH equation of the laser. They obtained two fields’ equations: one is mainly caused by the phase fluctuations of the KS equation called the turbulent state,158 while the other CSH equation produces periodic modulation in spatial and temporal intensities. The reason that the laser intensity is locally chaotic is explained by this system of equations, while the time-averaged intensity pattern maintains the overall symmetry of the system. The time-domain dynamics of laser pattern formation were further studied by Chen and Lan.153,159 The ring beam distributed pumping technology is used to obtain the high-order
In summary, the derivation and deformation of the MB equations have laid the physical foundation for the spontaneous organization of spatial patterns of structured laser beams. The formation of one-dimensional (1D) and two-dimensional (2D) spatial patterns can be explained by solving the MB equations and its modified CGL, CSH, and KS equations under specific conditions. In addition, since the MB equations are a system of multivariate nonlinear equations in space and time, the time-domain properties of certain cases in laser pattern formation, such as stability, oscillation, and chaos, can also be described.
3 Eigenmode Superposition-Based Pattern Formation
Since structured laser beams often appear as time-averaged patterns in practical applications,76,77,86 their spatial characteristics have received much attention in recent years. Here, we should refer to the Helmholtz equation,90
3.1 Eigenmodes of Helmholtz Equation
The Gaussian beam is a special solution of the Helmholtz equation under gradually varying amplitude approximation, which can describe the properties of laser beams well.96 The Helmholtz equation can then be solved for several structured laser beams based on the Gaussian beam. First and foremost, by solving the Helmholtz equation in the paraxial form, i.e., the paraxial wave equation, the well-known HG and LG modes can be solved in Cartesian coordinates and cylindrical coordinates, respectively, as shown in Figs. 3(a)–3(b).162,163 The IG modes are also an important family of orthogonal solutions to the paraxial wave equation, which represents a continuous transition from LG to HG modes, as shown in Fig. 3(c).164
Figure 3.Basic types of transverse patterns. (a) HG beam. (b) LG beam. (c) IG beam. (d) Mathieu beam. (e) Bessel beam. (f) Airy beam. (a)–(f) are adapted from Ref. 42. (g) Parabolic beam. Adapted from Ref. 160. (h) Parabolic-accelerating vector beam. Adapted from Ref. 161.
3.2 Eigenmodes Superposition Theory
For eigenmode superposition theory, it was found that the LG mode can be generated by coherent superposition of the HG modes as early as 1992,90 as shown in Fig. 4(a). It can be conveniently understood by illustrating the above basic modes on a Bloch sphere, analogous to the Poincaré sphere (PS) for polarization, but for spatial modes. For example, if such a Bloch sphere is constructed with the
Figure 4.Multiple types of transverse patterns after superposition. (a) Examples of the LG modes superposed of the HG modes. Adapted from Ref. 50. (b) HLG modes in PS. Adapted from Ref. 174. (c) The intensity distribution of
On the basis of HLG modes, analyzing its coherent superposition can obtain a high-dimensional complex light field in a coherent state, whose typical type is SU(2) mode. The SU(2) mode appears when the laser mode undergoes frequency degeneracy with a photon performing as an SU(2) quantum coherent state coupled with a classical periodic trajectory,174,177,184,185 which contains both spatially coherent wave packets and geometric ray trajectories, as shown in Fig. 4(e). Taking the HLG mode as the basic mode of SU(2) coherent state, the superposed SU(2) mode is expressed as174
Another similar superposition of the IG modes can form patterns with multi-singularity, named the helical IG (HIG) modes.186
Comparing HLG and HIG modes, it could be found that they all possess phase singularities with corresponding spatial distributions for differently composed HG and LG modes. The above HG, LG, HLG, and HIG modes belong to the general family of structured Gaussian modes, also known as the singularities hybrid evolution nature (SHEN) modes.178 The model expression of SHEN modes is
When
It can be seen that the above patterns are derived from the direct coherent superposition of the basic modes. The beam generated after superposition can be regarded as a new kind of eigenmodes with single-frequency operation. If performing coherent superposition between these eigenmodes, diverse and complex structured laser beam patterns could be generated. Moreover, in a practical resonator, if multiple modes interact coherently, the coupling of frequency and phase will be formed spontaneously to achieve TML. The principle of the TML effect97
The spatial pattern is analyzed by superimposing the electric field of multiple modes with the locking phase, including the Gouy phase.189 Moreover, with the assistance of the inherent nonlinearity of the laser cavity, the frequencies of the composed modes are possible to be pulled to the same value,87
Here,
The patterns formed by TML effect could possess phase singularities in dark points.102 Around each of these phase singularities, the modulus of the electric field raises from zero in the form of an inverted cone with a steep gradient. If performing a closed counterclockwise loop that surrounds one of these points, the phase of the envelope of the electric field changes by a value equal to
The stable beam pattern formed by coherent superposition through TML usually needs to meet the following conditions: First, there should be a large value of the Fresnel number to sustain such multi-transverse modes.85 Second, the transverse mode spacing,
Figure 5.Multiple patterns produced by coherent and incoherent superposition. (a)–(e) OVL patterns from coherent superposition of HG, LG, and IG modes, while (a) is from VCSELs. Adapted from Ref. 87. (b) Beam patterns from a solid-state LNP laser. Adapted from Ref. 88. (c) Beam patterns from a solid-state Yb:CALGO laser. Adapted from Ref. 89. (d) Beam patterns from a microchip Nd:YAG laser. Adapted from Ref. 99. (e) Beam patterns from a solid-state Pr:YLF laser. Adapted from Ref. 192. (f)–(g) Beam patterns from incoherent superposition of the (f) LG and (g) HG modes in solid-state lasers. Adapted from Refs. 193 and 194.
We have summarized the principle of directly generating spatially structured beams from the laser cavity, namely, the eigenmode superposition theory. The spatial characteristics of the spontaneous organized patterns are explained by the interaction and superposition of the oscillation modes. However, with the help of some modulation devices, such as the spiral phase plate,196
4 Spatiotemporal Beam Patterns
As for the study of structured laser pattern formation, the traditional electromagnetic field equations including MB and Helmholtz equations were adopted in recognition of the importance of gain and loss. In addition, the eigenmode superposition theory makes it possible to form diverse and complex beam patterns. When the laser oscillates simultaneously in multiple modes and the phase difference between them is stable, the mode locking occurs. What we talked about the spatial characteristics of laser transverse modes in Sec. 3 is to study the TML under the condition of single longitudinal mode. However, if multiple longitudinal modes are involved, total mode locking or spatiotemporal locking will occur,103
4.1 Spatiotemporal Mode Locking
The spatiotemporal mode locking is often realized by fiber lasers, referring to the coherent superposition of longitudinal and transverse modes of the laser, which allows locking multiple transverse and longitudinal modes to create ultrashort pulses with various spatiotemporal distributions, as shown in Figs. 6(a1) and 6(a2). The locking of transverse and longitudinal modes of a laser is realized by spatial filtering107 and spatiotemporal normal dispersion mode locking,116,117 respectively. The spatiotemporal mode locking can be realized through the high nonlinearity, gain, and spatiotemporal dispersion of the optical fiber medium, as well as spectral and spatial filtering.103 These inseparable coupling effects can be described by the cavity operator
Figure 6.Spatiotemporal mode-locking beam patterns. (a) Spatiotemporal mode locking through both longitudinal and transverse modes. Adapted from Ref. 103. (a1) Transverse distributions. (a2) Pattern, spectra, and intensity of composed modes. (a3) Schematic diagram of the cavity supporting spatiotemporal mode locking. (b) Experimental regimes of spatiotemporal mode locking and results from a reduced laser model. Adapted from Ref. 107. (c) Phase locking of the longitudinal and transverse (
The schematic diagram of the cavity supporting spatiotemporal mode locking is shown in Fig. 6(a3). The fiber ring laser was composed by offset splicing a graded-index fiber to a few-mode (three modes were supported) Yb-doped fiber amplifier, which leads to spatial filtering action.107 Spatial filtering can lock multiple transverse modes by controlling the overlap of fields coupled to the optical fiber. Then, the self-starting mode locking in the normal chromatic dispersion regime is achieved using a combination of spectral filtering and intracavity nonlinear polarization rotation, which is realized in the longitudinal mode locking. Through the space–time locking of the transverse and longitudinal modes, ultrashort pulses with special space–time distribution can be obtained. In the process of spatiotemporal mode locking, the mode dispersion will affect the locking effect, and the small mode dispersion of graded-index multimode fiber is considered to be a key factor to make spatiotemporal mode locking possible.103 Experimental regimes of spatiotemporal mode locking and results from a reduced laser model are shown in Fig. 6(b).107 The reduced models predicted how the effects of disorder, and the increased dimension of the optimization, affect the regimes of spatiotemporal mode locking. On this basis, it was found that spatiotemporal mode locking can also be realized in multimode fiber lasers with large mode dispersion, in which the intracavity saturable absorber plays an important role in offsetting the large mode dispersion.110 Spatiotemporal mode locking at a fiber laser using a step-index few-mode thulium fiber amplifier and a semiconductor saturable absorber was also reported.113 The former realizes spatial filtering to lock the transverse mode, and the latter plays a role in longitudinal mode locking.
Therefore, spatiotemporal mode locking is affected by gain, spatial filtering, optical nonlinear interaction between saturable absorbers, and optical fiber medium, as well as the coupling between temporal and spatial degrees of freedom.107 Apart from multimode fiber lasers, in all few-mode fiber, it is realizable to obtain spatiotemporal mode locking to create bound-state solitons.109 In addition, the scanning output beam can be generated by spatiotemporal locking of the laser mode,114 as shown in Fig. 6(c). The phase locking of the longitudinal and transverse (
4.2 Spatial Modulation of Mode-Locked Laser Pulses
The spatiotemporal mode-locked pulses directly produced by fiber lasers are often irregularly distributed. Another method to generate spatiotemporal beams with regular and complex distribution is to use the pulse-shaping device based on SLM. The designed pulse shaper is usually applied to shape the input femtosecond laser to obtain the specific spatiotemporal pattern. As shown in Fig. 7(a), the spatiotemporal optical vortices have been proved to be generated using spiral phase in the pulse shaper.118 Suppose an optical field in the spatial frequency–frequency domain (
Figure 7.Spatiotemporal beam patterns generated by a pulse shaper. (a) Generation (a1) and measurement (a2) of the spatiotemporal vortex. Adapted from Ref. 118. (b) Generation of the spatiotemporal toroidal vortex. Adapted from Ref. 126. (c) Generation of spatiotemporal Airy beams. Adapted from Ref. 121. (d) Generation of spatiotemporal Bessel beams. Adapted from Ref. 122. (e) Schematic of a device capable of mapping an input vector spatiotemporal field onto an arbitrary vector spatiotemporal output field. Adapted from Ref. 125.
Therefore, starting from chirped mode-locked pulses, a diffraction grating and cylindrical lens disperse frequencies spatially and act as a time-frequency Fourier transform. Then, a spiral phase on the SLM and an inverse Fourier transform by recollecting dispersed frequencies with a grating-cylindrical lens pair form the chirped spatiotemporal vortex. The full electric field is presented as
After generating the spatiotemporal vortex pulse, it travels through an afocal cylindrical beam expander and stretches in the direction of the vortex line. It is reported that the stretched spatiotemporal vortex pulse could transform into a toroidal vortex pulse through a conformal mapping system formed by two SLMs,126 as shown in Fig. 7(b). In addition, the spatiotemporal optical vortex was also demonstrated to be generated from a light source with partial temporal coherence and fluctuating temporal structures.119 Similarly, through a phase mask in SLM, interesting wave packets, such as diffraction-free pulsed beams with arbitrary 1D transverse profiles without suffering power loss were generated.121 The basic concept [illustrated in Fig. 7(c)] combines spatial-beam modulation and ultrafast pulse shaping and is related to the so-called
In addition, a device for generating an arbitrary vector spatiotemporal light field with arbitrary amplitude, phase, and polarization at each point in space and time was designed.125 As shown in Fig. 7(e), the laser output with two orthogonal polarizations propagates through the pulse shaper to redistribute between the space domain and the time domain. The shaped light propagates through the multi-plane light conversion (MPLC) device and is converted to different HG modes at the output port of the MPLC. Then, arbitrary spatiotemporal beams can be generated through the design and combination of HG beams at different times. These methods of transforming spatiotemporal beams through optical devices, such as pulse shapers, gratings, and lenses can effectively generate spatiotemporal beams with specific structures. They can be used in the fields of imaging, optical communication, nonlinear optics, particle manipulation, and so on.
5 Structured Beam Patterns Generated by Nonlinear Processes
For the booming research on the spatial and spatiotemporal properties of structured laser beams reviewed in the above sections, investigations are based on beams at a single wavelength. Currently, the nonlinear transformation technology for fundamental mode Gaussian beams is very mature. The combination between structured laser beams and nonlinear transformation on the transverse pattern variation has been of great interest in recent years. The SFG,127
Generally, the nonlinear transformation of structured patterns is based on the nonlinear wave equation,
Then, the field intensity of a specifically structured light beam after nonlinear transformation can be obtained by substituting the structured light field expression XG (e.g., HG, LG, and IG) into the coupled wave Eq. (22) and solving them.
5.1 External Cavity Nonlinear Processes
External cavity pattern modulations and nonlinear interactions are the main form of nonlinear transformation in structured laser beams. The first research on the transformation of structured laser beams in nonlinear optics began with the SHG of LG modes in 1996.131 It was found that the SHG fields carry twice the azimuthal indices of the pump, which provided straightforward insight into OAM conservation during nonlinear interactions at the photon level. The relationship among the OAMs of the input
Figure 8.External cavity nonlinear process of structured laser beams. (a) Experimental setup and results showing the OAMs of the input and output beams are equal. Adapted from Ref. 135. (b) Experimental setup and results showing different SHG pattern distributions in near and far fields. Adapted from Ref. 137. (c) SHG patterns with beam pattern transmission and radial mode transition. Adapted from Ref. 145. (d) Experimental setup and results of SFG modes with input beams possessing coherent superposition of LG beams. Adapted from Ref. 129.
As shown in Fig. 8(d), there are two sets of patterns and propagation behaviors: (1) one pump beam carries OAM superposition mode with another pump beam carrying a single OAM mode and (2) both pump beams carry OAM superposition modes. The relationship between the SFG beam and the pump beam is as follows:129
5.2 IntraCavity Nonlinear Processes
All these above studies on nonlinear processes were explored on the basis of external cavity structured laser pattern generation. Usually, in these studies, structured beams were first generated with the help of modulation devices (such as SLM), and then frequency conversion was carried out. For patterns generated through intracavity nonlinear process, some studies showed new properties. In Fig. 9(a1), it shows a frequency-doubled cavity that converts the infrared fundamental frequency of Nd:YAG (
Figure 9.Intracavity nonlinear process of structured laser beams. (a) Experimental setup and results to generate intracavity frequency-doubled LG beams. Adapted from Ref. 146. (b) Experimental setup and results showing near- and far-field SHG LG beams. Adapted from Ref. 147. (c) Experimental setup and results showing SHG optical vortices. Adapted from Ref. 148. (d) Experimental setup and results showing SHG modes of structured laser beams in the TML states. Adapted from Ref. 149.
The complex transverse patterns in the TML states were composed of different basic modes with different weight coefficients and different locking phases, which makes the spatial information of the fundamental frequency mode and its SHG beam quite abundant.
In summary, combining the nonlinear transformation with the study of structured laser beams, the beam patterns are endowed with richer spatial information characteristics. For external cavity nonlinear process of structured laser beams, the law of OAM conservation during nonlinear interactions of LG beams was found. For SHG and SFG modes of the special LG beams, the propagation of the output beam patterns from near-field to far-field shows varying spatial characteristics. For intracavity nonlinear processes of structured laser beams, much more complex and diverse beam patterns could be obtained. In general, as a new research field of structured laser beams, the nonlinear process of beam shaping can be widely used in 3D printing, optical trapping, and free-space optical communication. In addition, as reviewed in Secs. 3 and 4, since there are many techniques for generating spatial and spatiotemporal structured beams. By applying nonlinear transformation technology, it is expected that the future of structured laser beams will have broader development prospects.
6 Conclusions and Perspectives
This paper is dedicated to reviewing the evolution of the spatial patterns of structured laser beams, covering the spontaneous organization of patterns described by relative equations and the advancements of on-demand transformations of laser patterns. Taking the spatial pattern as the core, we first reviewed the theoretical basis of laser transverse mode formation and emphasized its electromagnetic field properties and the dynamic mechanisms described by the related equations. Then, we analyzed the latest developments in the spatial characteristics of structured laser beam patterns through eigenmode superposition theory. With the coherent and incoherent superposition of laser eigenmodes, complex and diverse spatial patterns of structured laser beams can be generated. These studies on the spatial characteristics of structured laser beams are often conducted under the premise of a single longitudinal mode. However, if multiple longitudinal modes are involved, the time dimension needs to be accounted for. Therefore, we later reviewed the research on spatiotemporal structured laser beams, including direct generation by spatiotemporal mode-locking effect in fiber lasers and indirect regulation through the pulse shaper based on SLM. Moreover, it was found that the structured laser patterns could be endowed with richer spatial information characteristics through nonlinear conversion processes. We finally reviewed various nonlinear processes of structured laser patterns ranging from external cavity modulations to intracavity transformation comprehensively. Looking back over these 10 years, we can see how much our research and understanding of laser spatial features have advanced from classical to quantum,213 especially since the discovery of OAM in the 1990s. However, the study of structured laser beams may just be in its early stages. We still have many unexplored novel phenomena and theories. There is potential for new and improved applications based on these spatial and temporal properties of laser modes, which could facilitate further research on novel laser spatial structures.
Biographies of the authors are not available.
[55] N. G. Basov, V. N. Morozov, A. N. Oraevskiǐ. Nonlinear mode interaction in lasers. Sov. J. Exp. Theor. Phys., 22, 895-904(1966).
[56] A. F. Suchkov. Effect of inhomogeneities on the operation regime of solid-state lasers. Sov. J. Exp. Theor. Phys., 49, 1495-1903(1966).
[58] V. E. Zakharov, A. B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Exp. Theor. Phys., 34, 62-69(1972).
[61] N. B. Baranova et al. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). JETP Lett., 33, 195(1981).
[96] J. C. Gutierrez-Vega, M. A. Bandres. Helmholtz–Gauss waves. J. Opt. Soc. Am. A:, 22, 289-298(2005).
[171] S. Chávez-Cerda et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J. Opt. Soc. Am. B, 4, S52-S57(2002).
Get Citation
Copy Citation Text
Xin Wang, Zilong Zhang, Xing Fu, Adnan Khan, Suyi Zhao, Yuan Gao, Yuchen Jie, Wei He, Xiaotian Li, Qiang Liu, Changming Zhao, "Evolution on spatial patterns of structured laser beams: from spontaneous organization to multiple transformations," Adv. Photon. Nexus 2, 024001 (2023)
Category: Reviews
Received: Oct. 11, 2022
Accepted: Jan. 6, 2023
Published Online: Feb. 7, 2023
The Author Email: Zilong Zhang (zlzhang@bit.edu.cn), Qiang Liu (qiangliu@tsinghua.edu.cn)