Chinese Optics Letters, Volume. 9, Issue 8, 083101(2011)
Effect of standing-wave field distribution on femosecond laser-induced damage of HfO2/SiO2 mirror coating
Single-pulse and multi-pulse damage behaviors of "standard" (with \lambda/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800-nm Ti:sapphire laser system. Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings. Meanwhile, the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%. To discuss the damage mechanism, a theoretical model based on photoionization, avalanche ionization, and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron density during pulse duration.
Get Citation
Copy Citation Text
Shunli Chen, Yuan’an Zhao, Hongbo He, Jianda Shao, "Effect of standing-wave field distribution on femosecond laser-induced damage of HfO2/SiO2 mirror coating," Chin. Opt. Lett. 9, 083101 (2011)
Category: Thin films
Received: Dec. 31, 2010
Accepted: Mar. 15, 2011
Published Online: Jun. 1, 2011
The Author Email: