A coherent laser source emitting mid-infrared (MIR) radiation in the 2.7–3 µm wavelength band has several unique features, including (i) locating at the well-known atmospheric transparency window[
Chinese Optics Letters, Volume. 19, Issue 9, 091407(2021)
Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited] Editors' Pick
Mid-infrared (MIR) laser sources operating in the 2.7–3 µm spectral region have attracted extensive attention for many applications due to the unique features of locating at the atmospheric transparency window, corresponding to the “characteristic fingerprint” spectra of several gas molecules, and strong absorption of water. Over the past two decades, significant developments have been achieved in 2.7–3 µm MIR lasers benefiting from the sustainable innovations in laser technology and the great progress in material science. Here, we mainly summarize and review the recent progress of MIR bulk laser sources based on the rare-earth ions-doped crystals in the 2.7–3 µm spectral region, including
1. Introduction
A coherent laser source emitting mid-infrared (MIR) radiation in the 2.7–3 µm wavelength band has several unique features, including (i) locating at the well-known atmospheric transparency window[
The GaIn(As)Sb/AlGaAnSb system-based strained multi-quantum-well LD is regarded as the most established semiconductor laser technology for 2–3 µm MIR laser generation[
Over the past two decades, benefiting from the great progress in material science and technology, a lot of MIR laser gain materials, especially rare-earth-doped crystalline and fiber materials with excellent optical, thermal, and mechanical properties have been developed[
Sign up for Chinese Optics Letters TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
Figure 1.(a) Typical emission spectrum[42] and (b) wavelength coverages[19] of Er3+-, Ho3+-, and Dy3+-doped lasers.
2. All Solid-State Crystalline Lasers in the 2.7–3 µm Spectral Region
At present, the rare-earth ions that can achieve room temperature MIR laser operation in the 2.7–3 µm spectral region are mainly , , and , among which the ion is mostly studied. Nevertheless, the MIR emission spectrum of the ion is a line, and the corresponding output wavelength is relatively short. In contrast, the number of electrons in the shell of and ions is even, resulting in the Stark-level splitting being greatly influenced by the crystal fields. Thus, the fluorescence spectra of the and ions-doped crystals are usually smooth and broadband, which enables the tunable laser output and also expands the wavelength towards the infrared direction.
2.1. Er3+-doped crystalline lasers in the 2.7–3 µm region
Besides the well-known laser transition of emitting wavelength around 1.55 µm, the ion can also provide 2.7–3 µm MIR emission with the transition. The simplified energy-level diagram of the -doped gain medium is shown in Fig. 2(a). Easy growing and the pumping wavelength being around (commercial LD operation wavelength) are the two fundamental merits that make -doped crystals much more extensively studied for the 2.7–3 µm laser generation compared to that of - and - doped crystals. As early as 1967, Robinson and Devor realized the first, to the best of our knowledge, laser oscillation of an -doped crystalline MIR laser at 2.69 µm with a mixed crystal[
Figure 2.(a) Simplified energy-level diagram of Er3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the summary of the room temperature CW output power and slope efficiency of Er-doped crystalline lasers at 2.7–3 µm; (c) the schematic of a diode-side-pumped Er:YSGG slab laser at 2.79 µm[83]; (d) the experimental setup of the LD end-pumped high-power Er:YAP laser[15].
After the first, to the best of our knowledge, realization of an mixed crystal operating at 2.69 µm in 1969, efficient operations both in the CW and pulsed regimes with -doped crystals have been demonstrated with the development of the crystal design and growth and the innovations of the laser technology. Figure 2(b) shows the room temperature CW output power and the corresponding slope efficiency obtained with ions-doped crystalline lasers in the 2.7–3 µm region. In 1992, Dinerman et al. reported the first, to the best of our knowledge, CW operation of monolithic Er:YAG, Er:GGG, and Er:YSGG lasers near 3 µm with output powers of 143, 155, and 190 mW[
|
In the pulsed regime, flash-side pumping is an effective and commonly used architecture to produce high-energy 2.7–3 µm laser pulses at low repetition rate. As early as 1990, pulse energy as high as 400 mJ was obtained with an Er:YAG crystal under the pump energy of 92 J[
Figure 3.(a) Experimental setup of high-energy LN EO Q-switched Er:YAG laser[94]; (b) the schematic diagram of the LD arrays side-pumped Er,Pr:GYSGG laser (inset: side-pumped symmetry)[60]; (c) the experimental setup and (d) output characterizations of the Fe:ZnSe passively Q-switched Er:YSGG laser[99].
Compared to flash pumping, pulsed LD pumping has the merits of high efficiency, better beam quality, and high repetition rate. Hence, an efficient and compact diode-laser-pumped 2.94 µm Er:YAG laser with energy up to 9 mJ was realized in 2010, consequently making the hermetically sealed windowed package[
|
Besides the Q-switched pulsed lasers, the mode-locked Er-doped ultrafast lasers are of great interest for some practical applications, owing to the ultrashort pulse width and high peak power. Picosecond or even femtosecond CW mode-locked Er-doped fiber lasers have been extensively studied and realized[
2.2 Ho3+-doped crystalline lasers in the 2.7–3 µm region
The ion is another promising candidate for generating 2.7–3 µm lasers related to the transition, as shown in Fig. 4(a). However, Ho-doped crystalline lasers emitting in the 2.7–3 µm spectral region are much less studied compared to those emitting around and -doped lasers. The main limiting issues are the pumping wavelength around (not the commercial emitting wavelength of a LD) and the same self-terminated effect occurring with the transition ( has a longer lifetime than , resulting in the lower laser level during oscillation). The same as the transition, the saturation of the transition can also be suppressed by cascade lasing ( and transitions) or co-doping with sensitized (typically ions) or deactivated ions (typically and ions)[
Figure 4.(a) Simplified energy-level diagram of Ho3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the fluorescence life time “reversion” of Ho:5I6 and Ho:5I7 in Ho,Pr:YLF crystals with doping concentrations of 0.498 at.% and 0.115 at.% for Ho3+ and Pr3+ ions[131]; (c) the output laser power of a Raman laser end-pumped Ho,Pr:YLF (Ho3+: 0.498 at.% and Pr3+: 0.115 at.%) laser[131]; (d) the experimental setup and laser output power of dual-end-pumped EO Q-switched Ho,Pr:YLF laser[132].
In the beginning, Ho-doped crystalline lasers operating in the 2.7–3 µm spectral region were mainly pumped by a flashlamp or pulsed laser due to lack of pumping source and the population bottleneck effect. In 1987, Machan et al. realized the simultaneous lasing of and ions at 1.064, 1.339, 2.94, and 3.011 µm with a flashlamp-pumped Ho:Nd:YAG crystal, indicating that the strong ion-ion interaction could produce efficient 3 µm lasing[
In 1990, Anthon reported the first laser (Q-switched Nd:YAG laser operating at 1123 nm) pumped 3 µm Ho:YAG and Ho:GGG laser[
In 1998, Diening et al. realized 11 and 2.5 mW CW laser output at 2.84 µm with an crystal pumped by a laser and LD, respectively[
|
In the pulsed regime, besides the microsecond pulse generated by pumping with the flashlamp and pulsed LD, nanosecond pulses were obtained with the active and passive Q-switching techniques. For passive Q-switching operation, SAs are mainly focused on low-dimensional materials. In 2017, our group realized a 2.95 µm diode-end-pumped passively Q-switched Ho,Pr:LLF laser with graphene as an SA, generating a maximum average output power of 88 mW with pulse width of 937.5 ns and repetition rate of 55.7 kHz[
The corresponding schematic experimental setup and the relationship between the output power and incident pump power are shown in Figs. 4(d) and 4(e). Table 4 summarizes the actively and passively Q-switched laser performance of Ho-doped crystalline lasers in the 2.7–3 µm region.
|
2.3. Dy3+-doped all solid-state crystalline lasers in the 2.7–3 µm spectral region
The ion is also a most promising and efficient candidate for emitting MIR laser wavelengths around based on its energy-level structure with the transition. The study of Dy-doped MIR lasers is much less than that of and ions, basically because of the lack of high-quality crystals and pump sources. Figure 5(a) shows the simplified energy-level diagram of the ion. The absorption bands of the ion are located in the near-infrared region (around 1.1, 1.3, and 1.7 µm). Same as the and ions, the possibility of realizing laser emission from the transition around depends on the host crystal material choice, which should possess low photon energy and weak ion to crystal lattice orbital coupling and therefore can efficiently decrease corresponding non-radiative losses and increase the quantum efficiency. To date, the transition has been obtained in fluoride crystals, such as and . In 1973, Johnson et al. demonstrated a flashlamp-pumped laser operating at 3.022 µm[
Figure 5.(a) Simplified energy-level diagram of Dy3+-doped gain medium and sensitizer effect of Yb3+ ions; (b) and (c) are the schematic of the actively Q-switched Dy:ZBLAN fiber laser and corresponding laser output characterizations[145].
However, it is a real drawback for establishing a compact MIR laser because of the pumping wavelength not corresponding to any commercially available high-power LDs. Therefore, researchers try to study the sensitized ions that can transfer pumping energy to the ion to allow optical pumping with commercially available LDs. ions have been proved to be the most efficient sensitized ions for ions-doped 3 µm MIR laser emission with energy transformation from to , which enables it to be pumped by the commercial 970 nm LD[
3. Challenges and Outlook
Expanding the laser wavelength to the MIR region is one of the most important developing trends of laser technology. To date, laser sources with directly emitting wavelengths at 2.7–3 µm are mainly based on , , and rare-earth ions-doped gain media, in which ions are mostly studied, ions take second place, and ions are the least studied. Compared to the rare-earth-doped fiber lasers, the rare-earth-doped crystalline lasers experience a relatively slow development mainly because of the lack of high-quality laser crystals. But, the solid-state crystalline lasers are compact and efficient all solid-state coherent laser sources with the merits of low undesirable nonlinear effects and large mode area and therefore have great advantages in producing high-energy and high-peak-power ultrafast lasers. In this review, we mainly summarize the state-of-the-art developments of all solid-state MIR crystalline lasers in the 2.7–3 µm spectral region based on , , and -doped crystals. However, there are still several challenges, and a series of potential studies need to be further pursued in the future.
First, the host material selection and the preparation of the high-quality crystals are the basis for high-power and high-efficiency solid-state MIR crystalline lasers in the 2.7–3 µm region. The longer the emitting wavelength, the narrower the bandgap between the upper and lower laser level, which, thus, results in the larger non-radiative transition loss. Therefore, for MIR laser emission, the host material should have low phonon energy to reduce the probability of non-radiative transitions. In addition, the host materials should have large thermal conductivity to mitigate the relatively heavy thermal effect of the MIR crystalline lasers. The damage threshold is another important issue for high-power and high-energy laser operation.
Second, the selection of sensitized and deactivated ions and the doping concentration are also important for rare-earth-doped crystalline lasers at 2.7–3 µm. For and ions-doped crystals, the deactivated ions are important for solving the “self-terminated” bottleneck to realize the high-efficiency laser operation. For and ions-doped crystals, the sensitized ions are important for selecting the commercial LD as the pump source. Besides, the doping concentrations of both excited and sensitized or deactivated ions should be further optimized.
Third, cascade laser operation is very attractive for multi-wavelength MIR laser generation. Based on the energy-level diagram of , , and ions, the cascade laser operation not only provides a multi-wavelength MIR laser source, but also enhances the 2.7–3 µm laser generation. The cascade laser operation of and ions-doped fiber lasers has been realized, while it still remains a big challenge for crystalline lasers.
Fourth, mode-locked laser operation is another challenge for rare-earth-doped crystalline lasers at 2.7–3 µm. The mode-locked laser operation in the near-infrared (1.0, 1.3, 1.5 µm) and MIR (2.0, 2.4 µm) regions has been widely studied, and picosecond or even femtosecond pulses have been generated. Due to the lack of suitable SAs and the absorption of , it is very difficult to achieve the mode-locking operation of rare-earth-doped crystalline lasers at 2.7–3 µm. However, with the innovations of ultrafast laser technology and material science, it is something to look forward to and can be widely applied in the fields of strong field physics, optical frequency comb, ultrafast spectroscopy and microimaging, etc.
[1] H. Gebbie, W. Harding, C. Hilsum, A. Pryce, P. Sciences. Atmospheric transmission in the 1 to 14 µm region. Proc. R. Soc. A, 206, 87(1951).
[2] L. S. Rothman, R. Gamache, R. Tipping, C. Rinsland, M. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, R. Transfer. The HITRAN molecular database: editions of 1991 and 1992. J. Quantum Spectrosc. Radiat. Transfer, 48, 469(1992).
[3] L. S. Rothman, C. Rinsland, A. Goldman, S. Massie, D. Edwards, J. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi. The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quantum Spectrosc. Radiat. Transfer, 60, 665(1998).
[4] J. E. Bertie, Z. J. A. S. Lan. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O at 25 C between 15,000 and 1 cm− 1. Am. Chem. Soc., 50, 1047(1996).
[5] S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman. 3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3. IEEE J. Quantum Electron., 26, 403(1990).
[6] T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, M. Kikuchi. High-power continuous-wave and cascade Ho3+:ZBLAN fiber laser and its medical applications. IEEE J. Sel. Top. Quantum Electron., 5, 936(1999).
[7] S. D. Jackson. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 µm. Opt. Lett., 29, 334(2004).
[8] C. Wang, H. Xia, Z. Feng, Z. Zhang, D. Jiang, J. Zhang, Q. Sheng, Q. Tang, S. He, H. Jiang, B. Chen. Enhanced emission at 2.85 µm of Ho3+/Pr3+ co-doped α-NaYF4 single crystal. Optoelectron. Lett., 12, 56(2016).
[9] H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, J. He. Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95 µm. Opt. Lett., 42, 699(2017).
[10] M. Tempus, W. Luethy, H. Weber, V. Ostroumov, I. Shcherbakov. 2.79 µm YSGG:Cr:Er laser pumped at 790 nm. IEEE J. Quantum Electron., 30, 2608(1994).
[11] D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields. Diode-pumped 1 W continuous-wave Er:YAG 3 µm laser. Opt. Lett., 24, 385(1999).
[12] X. Zhu, R. Jain. 10-W-level diode-pumped compact 2.78 µm ZBLAN fiber laser. Opt. Lett., 32, 26(2007).
[13] S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe. 12 W Q-switched Er:ZBLAN fiber laser at 2.8 µm. Opt. Lett., 36, 2812(2011).
[14] V. Fortin, M. Bernier, S. T. Bah, R. Vallee. 30 W fluoride glass all-fiber laser at 2.94 µm. Opt. Lett., 40, 2882(2015).
[15] W. Yao, H. Uehara, H. Kawase, H. Chen, R. Yasuhara. Highly efficient Er:YAP laser with 6.9 W of output power at 2920 nm. Opt. Express, 28, 19000(2020).
[16] T. Li, K. Beil, C. Krankel, C. Brandt, G. HuberAdvanced Solid-State Photonics. Laser performance of highly doped Er:Lu2O3 at 2.8 µm, AW5A.6(2012).
[17] R. Woodward, M. Majewski, G. Bharathan, D. Hudson, A. Fuerbach, S. D. Jackson. Watt-level dysprosium fiber laser at 3.15 µm with 73% slope efficiency. Opt. Lett., 43, 1471(2018).
[18] S. D. Jackson. Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett., 83, 1316(2003).
[19] H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, Y. Liu. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 µm using PbS nanoparticles. Opt. Lett., 44, 2322(2019).
[20] Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, C. Tu. Mid-infrared emission in Dy:YAlO3 crystal. Opt. Mater. Express, 4, 1104(2014).
[21] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3 µm [Invited]. J. Opt. Soc. Am. B, 34, 538(2017).
[22] P. L. Melngailis. Maser action in InAs diodes. Appl. Phys. Lett., 2, 176(1963).
[23] D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. Connolly, T. L. Belenky. 2.3–2.7 µm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers. IEEE Poton. Technol. Lett., 11, 794(1999).
[24] A. D. Andreev, D. V. Donetsky. Analysis of temperature dependence of the threshold current in 2.3–2.6 µm InGaAsSb/AlGaAsSb quantum-well lasers. Appl. Phys. Lett., 74, 2743(1999).
[25] H. Choi, S. Eglash, G. J. Turner. Double-heterostructure diode lasers emitting at 3 µm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett., 64, 2474(1994).
[26] A. Joullié, P. Christol, A. N. Baranov, A. J. Vicet. Mid-Infrared 2–5 µm heterojunction laser diodes. Solid-State Mid-Infrared Laser Sources, 89(2003).
[27] C. Sirtori, J. J. Nagle. Quantum cascade lasers: the quantum technology for semiconductor lasers in the mid-far-infrared. C. R. Physique, 4, 639(2003).
[28] D. Hofstetter, M. I. Faist. High Performance Quantum Cascade Lasers and Their Applications(2003).
[29] G. Soboń, T. Martynkien, P. Mergo, L. Rutkowski, A. J. Foltynowicz. High-power frequency comb source tunable from 2.7 to 4.2 µm based on difference frequency generation pumped by an Yb-doped fiber laser. Opt. Lett., 42, 1748(2017).
[30] J. Zhang, K. Fritsch, Q. Wang, F. Krausz, K. F. Mak, O. J. Pronin. Intra-pulse difference-frequency generation of mid-infrared (2.7–20 µm) by random quasi-phase-matching. Opt. Lett., 44, 2986(2019).
[31] L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, J. B. Pierce. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102(1995).
[32] A. Godard. Infrared (2–12 µm) solid-state laser sources: a review. Comptes Rendus Physique, 8, 1100(2007).
[33] H. Ishizuki, T. J. Taira. High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm × 5 mm aperture. Opt. Lett., 30, 2918(2005).
[34] Y. Peng, X. Wei, X. Luo, Z. Nie, J. Peng, Y. Wang, D. J. Shen. High-power and widely tunable mid-infrared optical parametric amplification based on PPMgLN. Opt. Lett., 41, 49(2016).
[35] H. J. Krause, W. J. Daum. High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm. Appl. Phys. B, 56, 8(1993).
[36] A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T. M. Benson. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express, 18, 26704(2010).
[37] C. Zhao, Y. Hang, L. Zhang, J. Yin, P. Hu, E. Ma. Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 µm and 2.9 µm lasers. Opt. Mater., 33, 1610(2011).
[38] D. D. Hudson, S. D. Jackson, B. J. Eggleton. Novel laser sources in the mid-infrared. IEEE 3rd International Conference on Photonics, 381(2012).
[39] P. Zhang, Y. Hang, L. Zhang. Deactivation effects of the lowest excited state of Ho3+ at 2.9 µm emission introduced by Pr3+ ions in LiLuF4 crystal. Opt. Lett., 37, 5241(2012).
[40] J. Ma, Z. Qin, G. Xie, L. Qian, D. Tang. Review of mid-infrared mode-locked laser sources in the 2.0 µm–3.5 µm spectral region. Appl. Phys. Rev., 6, 140(2019).
[41] Y. O. Aydın, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235(2017).
[42] R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, S. D. Jackson. Watt-level dysprosium fiber laser at 3.15 µm with 73% slope efficiency. Opt. Lett., 43, 1471(2018).
[43] M. Robinson, D. P. Devor. Thermal switching of laser emission of Er3+ at 2.69 µm and Tm3+ at 1.86 µm in mixed crystals of CaF2:ErF3:TmF3. Appl. Phys. Lett., 10, 167(1967).
[44] J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, H. Zhang, M. Cheng, Q. Zhang, S. Yin. Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals. Opt. Lett., 38, 1218(2013).
[45] V. Lupei, S. Georgescu, V. Florea. On the dynamics of population inversion for 3 µm Er3+ lasers. IEEE J. Quantum Electron., 29, 426(1993).
[46] B. J. Dinerman, P. F. Moulton. 3-µm cw laser operations in erbium-doped YSGG, GGG, and YAG. Opt. Lett., 19, 1143(1994).
[47] T. Jensen, V. G. Ostroumov, G. Huber. Upconversion processes in Er3+:YSGG and diode-pumped laser experiments at 2.8 µm. Advanced Solid State Lasers, IL4(1995).
[48] C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger. Emission properties of an optimised 2.8 µm Er3+:YLF laser. Opt. Commun., 139, 215(1997).
[49] T. Li, K. Beil, C. Kränkel, G. Huber. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 µm. Opt. Lett., 37, 2568(2012).
[50] Y. Wang, Z. You, J. Li, Z. Zhu. En, and C. Tu, “Spectroscopic investigations of highly doped Er3+:GGGG and Er3+/Pr3+:GGGG crystals. J. Phys. D, 42, 215406(2009).
[51] H. Zhang, X. Meng, C. Wang, P. Wang, L. Zhu, X. Liu, C. Dong, Y. Yang, R. Cheng, J. Dawes, J. Piper, S. Zhang, L. Sun. Growth, spectroscopic properties and laser output of Er:Ca4YO(BO3)3 and Er:Yb:Ca4YO(BO3)3 crystals. J. Crystal Growth, 218, 81(2000).
[52] Y. D. Zavartsev, A. I. Zagumennyi, L. A. Kulevskii, A. V. Lukashev, P. P. Pashinin, P. A. Studenikin, I. A. Shcherbakov, A. F. Umyskov. Q-switching in a Cr3+: Yb3+: Ho3+: YSGG crystal laser based on the 5I6–5I7 (λ = 2.92 µm) transition. Quantum Electron., 29, 295(1999).
[53] F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, I. M. Ranieri. Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals. J. Appl. Phys., 91, 624(2002).
[54] J. Hu, H. Xia, H. Hu, X. Zhuang, Y. Zhang, H. Jiang, B. Chen. Enhanced 2.7 µm emission from diode-pumped Er3+/Pr3+ co-doped LiYF4 single crystal grown by Bridgman method. Mater. Res. Bull., 48, 2604(2013).
[55] X. Zhuang, H. Xia, H. Hu, J. Hu, P. Wang, J. Peng, Y. Zhang, H. Jiang, B. Chen. Enhanced emission of 2.7 µm from Er3+/Nd3+-codoped LiYF4 single crystals. Mater. Sci. Eng. B, 178, 326(2013).
[56] P. Wang, H. Xia, J. Peng, H. Hu, L. Tang, Y. Zhang, B. Chen, H. Jiang. Concentration effect of Nd3+ ion on the spectroscopic properties of Er3+/Nd3+ co-doped LiYF4 single crystal. Mater. Chem. Phys., 144, 349(2014).
[57] Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, C. Tu. Diode-end-pumped midinfrared multiwavelength Er: Pr: GGG laser. IEEE Photon. Technol. Lett., 26, 667(2014).
[58] J. Liu, X. Fan, J. Liu, W. Ma, J. Wang, L. Su. Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser. Opt. Lett., 41, 4660(2016).
[59] H. Xia, J. Feng, Y. Ji, Y. Sun, Y. Wang, Z. Jia, C. Tu. 2.7 µm emission properties of Er3+/Yb3+/Eu3+:SrGdGa3O7 and Er3+/Yb3+/Ho3+:SrGdGa3O7 crystals. J. Quant. Spectrosc. Radiat. Transfer, 173, 7(2016).
[60] X. Zhao, D. Sun, J. Luo, H. Zhang, Z. Fang, C. Quan, L. Hu, M. Cheng, Q. Zhang, S. Yin. Laser performance of a 966 nm LD side-pumped Er,Pr:GYSGG laser crystal operated at 2.79 µm. Opt. Lett., 43, 4312(2018).
[61] B. J. Dinerman, C. L. Moulton, A. Pinto. CW laser operation from Er:YAG, Er:GGG and Er:YSGG. Advanced Solid State Lasers, ML10(1992).
[62] R. C. Stoneman, L. Esterowitz. Efficient resonantly pumped 2.8 µm Er3+:GSGG laser. Opt. Lett., 17, 816(1992).
[63] A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, M. Andriasyan. Fe:ZnSe passive Q-switching of 2.8 µm Er:Cr:YSGG laser cavity. Proc. SPIE, 6451, 64510L(2007).
[64] J. Luo, D. Sun, H. Zhang, Q. Guo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, S. Yin. Growth, spectroscopy, and laser performance of a 2.79 µm Cr,Er,Pr:GYSGG radiation-resistant crystal. Opt. Lett., 40, 4194(2015).
[65] X. Zhao, D. Sun, J. Luo, H. Zhang, C. Quan, L. Hu, Z. Han, K. Dong, M. Cheng, S. Yin. Spectroscopic and laser properties of Er:LuSGG crystal for high-power approximately 2.8 µm mid-infrared laser. Opt. Express, 28, 8843(2020).
[66] W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, M. Kokta. Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12. Appl. Phys. Lett., 51, 1218(1987).
[67] Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, X. Tao. Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals. Crystengcomm, 21, 1928(2019).
[68] R. Stoneman, J. Lynn, L. Esterowitz. Direct upper-state pumping of the 2.8 µm, Er3+:YLF laser. IEEE J. Quantum Electron., 28, 1041(1992).
[69] C. Labbe, J. Doualan, P. Camy, R. Moncorgé, M. Thuau. The 2.8 µm laser properties of Er3+ doped CaF2 crystals. Opt. Commun., 209, 193(2002).
[70] T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, A. Y. Dergachev. Continuously tunable cw lasing near 2.75 µm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. Quantum Electron., 36, 591(2006).
[71] J. Liu, X. Feng, X. Fan, Z. Zhang, B. Zhang, J. Liu, L. Su. Efficient continuous-wave and passive Q-switched mode-locked Er3+:CaF2-SrF2 lasers in the mid-infrared region. Opt. Lett., 43, 2418(2018).
[72] R. Švejkar, J. Šulc, H. Jelínková, V. Kubeček, W. Ma, D. Jiang, Q. Wu, L. Su. Diode-pumped Er:SrF2 laser tunable at 2.7 µm. Opt. Mater. Express, 8, 1025(2018).
[73] C. Quan, D. Sun, J. Luo, H. Zhang, Z. Fang, X. Zhao, L. Hu, M. Cheng, Q. Zhang, S. Yin. 2.7 µm dual-wavelength laser performance of LD end-pumped Er:YAP crystal. Opt. Express, 26, 28421(2018).
[74] H. Kawase, R. Yasuhara. 2.92-µm high-efficiency continuous-wave laser operation of diode-pumped Er:YAP crystal at room temperature. Opt. Express, 27, 12213(2019).
[75] L. Merkle, N. Ter-Gabrielyan, V. Fromzel. Cryogenic laser properties of Er:YAG and Er:Sc2O3-a comparison. Advanced Solid-State Photonics, AWA2(2011).
[76] L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, D. Tang. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 µm. Opt. Express, 22, 19495(2014).
[77] H. Uehara, R. Yasuhara, S. Tokita, J. Kawanaka, M. Murakami, S. Shimizu. Efficient continuous wave and quasi-continuous wave operation of a 2.8 µm Er:Lu2O3 ceramic laser. Opt. Express, 25, 18677(2017).
[78] X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, J. Xu. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers. Photon. Res., 6, 830(2018).
[79] D. Yin, J. Wang, Y. Wang, P. Liu, J. Ma, X. Xu, D. Shen, Z. Dong, L. B. Kong, D. Tang. Fabrication of Er:Y2O3 transparent ceramics for 2.7 µm mid-infrared solid-state lasers. J. Euro. Ceram. Soc., 40, 444(2019).
[80] Y. O. Aydın, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235(2017).
[81] N. Ter-Gabrielyan, V. Fromzel. Cascade generation at 1.62, 1.73 and 2.8 µm in the Er:YLF Q-switched laser. Opt. Express, 27, 20199(2019).
[82] G. S. John, W. David, F. Josh. Efficient 1.5 W CW and 9 mJ quasi-CW TEM00 mode operation of a compact diode-laser-pumped 2.94 µm Er:YAG laser. Proc. SPIE, 7578, 75781E(2010).
[83] B. Shen, H. Kang, P. Chen, J. Liang, Q. Ma, J. Fang, D. Sun, Q. Zhang, S. Yin, X. Yan, L. Gao. Performance of continuous-wave laser-diode side-pumped Er:YSGG slab lasers at 2.79 µm. Appl. Phys. B, 121, 511(2015).
[84] L. You, D. Lu, Z. Pan, H. Yu, H. Zhang, J. Wang. High-efficiency 3 µm Er:YGG crystal lasers. Opt. Lett., 43, 5873(2018).
[85] H. Xue, L. Wang, W. Zhou, H. Wang, J. Wang, D. Tang, D. Shen. Stable Q-switched mode-locking of 2.7 µm Er:Y2O3 ceramic laser using a semiconductor saturable absorber. Appl. Sci., 8, 1155(2018).
[86] Z. D. Fleischman, T. Sanamyan. Spectroscopic analysis of Er3+:Y2O3 relevant to 27 µm mid-IR laser. Opt. Mater. Express, 6, 3109(2016).
[87] T. Sanamyan, M. Dubinskii. Er3+-doped diode-pumped ceramic laser delivers 14 W CW at 2.7 µm. CLEO, CMY1(2011).
[88] W. Yao, H. Uehara, S. Tokita, H. Chen, D. Konishi, M. Murakami, R. Yasuhara. LD-pumped 2.8 µm Er:Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency. Appl. Phys. Express, 14, 012001(2020).
[89] H. Kawase, H. Uehara, H. Chen, R. Yasuhara. Passively Q-switched 2.9 µm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express, 12, 102006(2019).
[90] J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, S. Yin. Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er,Pr:GYSGG crystal. Opt. Express, 21, 23425(2013).
[91] M. Inochkin, L. Khloponin, V. Khramov, G. Altshuler, A. Erofeev, S. Wilson, F. Feldchein. High-efficiency diode-pumped Er:YLF laser with multi-wavelength generation. Proc. SPIE, 8235, 823502(2012).
[92] S. Wüthrich, W. Lüthy, H. P. Weber. Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 µm. J. Appl. Phys., 68, 5467(1990).
[93] A. Zajac, M. Skorczakowski, J. Swiderski, P. Nyga. Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications. Opt. Express, 12, 5125(2004).
[94] P. Koranda, H. Jelínková, M. Nemec, J. Sulc, M. Cech. Electro-optically Q-switched Er:YAG laser. Lasers and Applications in Science and Engineering, 141(2005).
[95] V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. G. Polushkin, A. A. Voronov. 2.94 µm Er:YAG Q-switched laser with FE2+:ZnSe passive shutter. Proc. SPIE, 6610, 661008(2007).
[96] L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, C. Xu. 2.79 µm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser. Opt. Lett., 38, 2150(2013).
[97] J. Wang, T. Cheng, L. Wang, J. Yang, D. Sun, S. Yin, X. Wu, H. Jiang. Compensation of strong thermal lensing in an LD side-pumped high-power Er:YSGG laser. Laser Phys. Lett., 12, 105004(2015).
[98] Z. Qin, G. Xie, J. Zhang, J. Ma, P. Yuan, L. Qian. Continuous-wave and passively Q-switched Er:Y2O3 ceramic laser at 2.7 µm. International J. Opt., 2018, 3153614(2018).
[99] Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, J. Zhang. Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 µm with Fe:ZnSe saturable absorber. IEEE Photon. Technol. Lett., 31, 565(2019).
[100] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077(2009).
[101] Z. You, Y. Sun, D. Sun, Z. Zhu, Y. Wang, J. Li, C. Tu, J. Xu. High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA. Opt. Lett., 42, 871(2017).
[102] X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, J. He. Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser. Opt. Lett., 42, 3502(2017).
[103] J. Liu, H. Huang, F. Zhang, Z. Zhang, J. Liu, H. Zhang, L. Su. Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser. Photon. Res., 6, 762(2018).
[104] Q. Hao, J. Liu, Z. Zhang, B. Zhang, F. Zhang, J. Yang, J. Liu, L. Su, H. Zhang. Mid-infrared Er:CaF2–SrF2 bulk laser Q-switched by MXene Ti3C2Tx absorber. Appl. Phys. Express, 12, 085506(2019).
[105] J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, L. Su. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express, 24, 30289(2016).
[106] M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Kränkel, G. Huber. Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2. Opt. Lett., 41, 540(2016).
[107] J. Xu, M. Li, Y. J. L. P. Chen. WS2 passively Q-switched Er:SrF2 laser at ∼3 µm. Laser Phys., 29, 055802(2019).
[108] Y. Yao, N. Cui, Q. Wang, L. Dong, J. L. He. Highly efficient continuous-wave and ReSe2Q-switched 3 µm dual-wavelength Er:YAP crystal lasers. Opt. Lett., 44, 2839(2019).
[109] B. Yan, B. Zhang, H. Nie, G. Li, X. Sun, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale, 10, 20171(2018).
[110] X. Guan, L. Zhan, Z. Zhu, B. Xu, H. Xu, Z. Cai, W. Cai, X. Xu, J. Zhang, J. Xu. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7 µm. Appl. Opt., 57, 371(2018).
[111] P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, L. Qian. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 40, 4855(2015).
[112] R. I. Woodward, D. D. Hudson, A. Fuerbach, S. D. Jackson. Generation of 70 fs pulses at 2.86 µm from a mid-infrared fiber laser. Opt. Lett., 42, 4893(2017).
[113] H. Gu, Z. Qin, G. Xie, T. Hai, P. Yuan, J. Ma, L. Qian. Generation of 131 fs mode-locked pulses from 2.8 µm Er:ZBLAN fiber laser. Chin. Opt. Lett., 18, 031402(2020).
[114] C. Wei, X. Zhu, R. A. Norwood, N. Peyghambarian. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 37, 3849(2012).
[115] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3 µm [Invited]. J. Opt. Soc. Am. B, 34, A15(2017).
[116] H. Luo, J. Yang, J. Li, Y. Liu. Tunable sub-300 fs soliton and switchable dual-wavelength pulse generation from a mode-locked fiber oscillator around 2.8 µm. Opt. Lett., 46, 841(2021).
[117] J. Machan, R. Kurtz, M. Bass, M. Birnbaum, M. Kokta. Simultaneous, multiple wavelength lasing of (Ho, Nd):Y3Al5O12. Appl. Phys. Lett., 51, 1313(1987).
[118] A. F. Umyskov, D. Z. Yu, A. I. Zagumennyi, V. O. Vyacheslav, P. A. Studenikin. Cr3+, Yb3+, Ho3+:YSGG crystal laser with a continuously tunable emission wavelength in the range 2.84–3.05 µm. Quantum Electron., 26, 563(1996).
[119] A. Diening, S. Kuck. Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet. J. Appl. Phys., 87, 4063(2000).
[120] Z. Wang, B. Zhang, J. He, K. Yang, K. Han, J. Ning, J. Hou, F. Lou. Passively Q-switched mode-locking of Tm:YAP laser based on Cr:ZnS saturable absorber. Appl. Opt., 54, 4333(2015).
[121] J. Q. Hong, L. H. Zhang, M. Xu, Y. Hang. Activation and deactivation effects to Ho3+ at ∼2.8 µm MIR emission by Yb3+ and Pr3+ ions in YAG crystal. Opt. Mater. Express, 6, 1444(2016).
[122] H. Zhang, X. Sun, J. Luo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, D. Sun. Structure, defects, and spectroscopic properties of a Yb,Ho,Pr:YAP laser crystal. J. Alloys Comp., 672, 223(2016).
[123] J. Hong, L. Zhang, Y. Hang. Enhanced 2.86 µm emission of Ho3+,Pr3+-codoped LaF3 single crystal. Opt. Mater. Express, 7, 1509(2017).
[124] S. Li, L. Zhang, M. He, G. Chen, Y. Yang, S. Zhang, M. Xu, T. Yan, N. Ye, Y. Hang. Nd3+ as effective sensitizing and deactivating ions for the 2.87 µm lasers in Ho3+ doped LaF3 crystal. J. Lumin., 208, 63(2019).
[125] S. Wang, J. Zhang, N. Xu, S. Jia, G. Brambilla, P. Wang. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser. Opt. Lett., 45, 1216(2020).
[126] D. Anthon, T. Pier. Laser-pumped 3 µm Ho:YAG and Ho:GGG lasers. Advanced Solid State Lasers, MML3(1990).
[127] A. F. Umyskov, Y. D. Zavartsev, A. I. Zagumennyi, V. V. Osiko, P. A. Studenikin. Efficient 3 µm Cr3+:Yb3+:Ho3+:YSGG crystal laser. Quantum Electron., 26, 771(1996).
[128] A. V. Lukashev, Y. D. Zavartsev, A. I. Zagumennyi, M. E. Karasev, L. A. Kulevskii, P. P. Pashinin, P. A. Studenikin, V. N. Tranev. Efficient flash lamp pumped YSGG:Cr:Yb:Ho laser at 3 µm. IEEE LEOS Annual Meeting Conference, 914(1999).
[129] A. Diening, E. A. Möbert, E. Heumann, G. Huber, B. H. T. Chai. Diode-pumped cw lasing of Yb,Ho:KYF4 in the 3 µm spectral range in comparison to Er:KYF4. Laser Phys., 8, 214(1998).
[130] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+:LiLuF4 bulk laser at 2.95 µm. IEEE J. Sel. Top. Quantum Electron., 53, 8400208(2017).
[131] H. Nie, H. Xia, B. Shi, J. Hu, B. Zhang, K. Yang, J. He. High-efficiency watt-level continuous-wave 2.9 µm Ho,Pr:YLF laser. Opt. Lett., 43, 6109(2018).
[132] H. Nie, B. Shi, H. Xia, J. Hu, B. Zhang, K. Yang, J. L. He. High-repetition-rate kHz electro-optically Q-switched Ho, Pr:YLF 2.9 µm bulk laser. Opt. Express, 26, 33671(2018).
[133] S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, G. Rosenblatt. 3 µm laser performance of Ho:YAlO3 and Nd, Ho:YAlO3. IEEE J. Quantum Electron., 26, 403(1990).
[134] S. Bowman, W. Rabinovich, B. Feldman, M. Winings. Tuning the 3 µm Ho:YAlO3 Laser. Advanced Solid State Lasers, MML4(1990).
[135] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+:LiLuF4 bulk laser at 2.95 µm. IEEE J. Sel. Top. Quantum Electron., 24, 1600205(2017).
[136] Z. Yan, G. Li, T. Li, S. Zhao, K. Yang, S. Zhang, M. Fan, L. Guo, B. Zhang. Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2. IEEE Photon. J., 9, 1506207(2017).
[137] H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 µm bulk laser. Opt. Lett., 43, 3349(2018).
[138] M. Fan, T. Li, G. Li, S. Zhao, K. Yang, S. Zhang, B. Zhang, J. Xu, C. Kränkel. Passively Q-switched Ho,Pr:LiLuF4 laser with graphitic carbon nitride nanosheet film. Opt. Express, 25, 12796(2017).
[139] W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, J. He. Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber. Opt. Lett., 43, 1179(2018).
[140] S. Liu, H. Nie, B. Zhang, S. Li, Y. Yan, L. He. Continuous-wave-tunable and passively Q-switched 2.9 µm Ho,Pr:LiLuF4 lasers. Laser Phys. Lett., 16, 015802(2019).
[141] L. F. Johnson, H. J. Guggenheim. Laser emission at 3 µm from Dy3+ in BaY2F8. Appl. Phys. Lett., 23, 96(1973).
[142] N. Djeu, V. E. Hartwell, A. A. Kaminskii, A. V. Butashin. Room-temperature 3.4 µm Dy:BaYb2F8 laser. Opt. Lett., 22, 997(1997).
[143] Y. H. Tsang, A. E. El. Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd: YAG laser operating at 1.3 µm. Opt. Express, 14, 678(2006).
[144] M. R. Majewski, S. D. Jackson. Highly efficient mid-infrared dysprosium fiber laser. Opt. Lett., 41, 2173(2016).
[145] R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, S. D. Jackson. Q-switched Dy:ZBLAN fiber lasers beyond 3 µm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Opt. Express, 27, 15032(2019).
[146] H. Luo, Y. Xu, J. Li, Y. Liu. Gain-switched dysprosium fiber laser tunable from 2.8 to 3.1 µm. Opt. Express, 27, 27151(2019).
[147] Y. Dwivedi, S. B. Rai. Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass. Opt. Mater., 31, 1472(2009).
[148] P. Zhang, M. Xu, L. Zhang, J. Hong, X. Wang, Y. Wang, G. Chen, Y. Hang. Intense 2.89 µm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping. Opt. Express, 23, 27786(2015).
Get Citation
Copy Citation Text
Hongkun Nie, Feifei Wang, Junting Liu, Kejian Yang, Baitao Zhang, Jingliang He, "Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited]," Chin. Opt. Lett. 19, 091407 (2021)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Apr. 27, 2021
Accepted: May. 21, 2021
Published Online: Aug. 26, 2021
The Author Email: Baitao Zhang (btzhang@sdu.edu.cn)