The rise of mature photonic chip-scale systems opens new possibilities to investigate fundamental light–liquid interactions on a nanoscale. Researchers from University of California San Diego recently proposed a novel paradigm where liquids, which typically do not strongly interact with light on a micro- and nanoscale, support a significant mutual light–liquid interaction that enables several nonlinear-nonlocal effects. In their work, “Thin liquid film as an optical nonlinear-nonlocal medium and memory element in integrated optofluidic reservoir computer,” authors Chengkuan Gao, Prabhav Gaur, Shimon Rubin, and Yeshaiahu Fainman theoretically and computationally demonstrate a two-way interaction where the photonic mode affects the liquid film geometry while the latter in turn affects propagation properties of the photonic mode.