Since the invention of chirped pulse amplification (CPA)[1], high-power laser technology has developed rapidly in the past several decades[2]. With ultra-high laser intensity (
High Power Laser Science and Engineering, Volume. 13, Issue 1, 010000e2(2025)
Intense vortex-laser generation and phase detection by surface plasma holograms
With the escalating laser peak power, modulating and detecting the intensity, duration, phase and polarization of ultra-intense laser pulses progressively becomes increasingly arduous due to the limited damage thresholds of conventional optical components. In particular, the generation and detection of ultra-intense vortex lasers pose great challenges for current laser technologies, which has limited the widely potential applications of relativistic vortex lasers in various domains. In this study, we propose to reconstruct the vortex phase and generate and amplify the relativistic vortex lasers via surface plasma holograms (SPHs). By interfering with the object laser and reference laser, SPHs are formed on the target and the phase of the interfering laser is imprinted through the modulation of surface plasma density. In particular, using the quadrature phase-shift interference, the vortex phase of the object laser can be well reconstructed. The generated vortex lasers can be focused and enhanced further by one order of magnitude, up to
1 Introduction
Since the invention of chirped pulse amplification (CPA)[1], high-power laser technology has developed rapidly in the past several decades[2]. With ultra-high laser intensity (
The relativistic vortex-laser–plasma interaction has received dramatic attention in the past year[23]. With ultra-intense intensity and helical electromagnetic fields, the relativistic vortex laser is regarded as a unique tool for accelerating and manipulating relativistic charged particles, as well as gaining insight into the transfer of angular momentum (AM) between particles and fields under high-field conditions[24–40]. The relativistic intensity and precise phase of vortex lasers are foundational conditions that enable the realization of ingenious dynamic processes in these exciting theoretical and numerical studies. In order to advance the experimental research on relativistic vortex-laser–plasma interaction, various theoretical and numerical schemes have been proposed to generate relativistic intensity vortex lasers[15,17,41–46], yet obstacles persist in several aspects, for example, further enhancing the intensity of vortex lasers and uncovering the exact phase information. In the laboratory, the maximum intensity of vortex lasers using reflected phase plates or off-axis spiral phase mirrors still remains around
In this paper, we demonstrate a novel method for the reconstruction of the vortex phase and generation of relativistic vortex lasers by surface plasma holograms (SPHs). Firstly, a moderate object laser (vortex laser) and a reference laser (Gaussian laser) are used to simultaneously irradiate the surface of a flat plasma target and interfere with each other. Under the modulation of the ponderomotive force of the interference laser and the generated charge separation fields, SPHs form on the surface plasma of the target. By using the quadrature phase-shift interference, we can reconstruct the phase profile of the incident vortex laser from the density distribution of the SPHs. After the SPH formation, an ultra-intense Gaussian laser as a read-out laser irradiates the hologram. The read-out laser is diffracted by the SPH and duplicates the phase of the object laser, which converts it into an ultra-intense vortex laser. Three-dimensional particle-in-cell (3D-PIC) simulations indicate that a Gaussian read-out laser pulse with intensity of
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
2 Model and method
The fundamental characteristics of the hologram are the abilities of recording, storing and retrieving the phase of beams. Here, we take the vortex laser and Gaussian laser as examples to introduce the plasma hologram in our study. As shown in Figure 1(a), a linearly polarized (LP) Laguerre–Gaussian (LG) laser with an incident angle of
Figure 1.(a) Schematic of the hologram generation. The patterns of the holograms satisfy the conditions of Equation and (c)
. The patterns of the holograms satisfy the conditions of Equation
and (e)
.
We take the
Figures 1(b)–1(e) show holograms with parameters
In the following, we uncover the principle of phase reconstruction using quadrature phase-shift interference[50]. Taking Equation (2a) as an example, by introducing a phase shift of
Combining Equations (1) and (3), the phase profile of the object laser can be expressed as follows:
Since
Figure 2 schematically illustrates the key features of the SPH and vortex-laser generation. To demonstrate the feasibility of the proposed method, we performed full 3D-PIC simulations with the open-source code EPOCH[52]. The grid size of the simulation box is
Figure 2.Schematic of the surface plasma hologram (SPH) formation and ultra-intense vortex-laser generation. (a) The object laser with mode LG and the reference laser interfere at the surface of the flat plasma target. The target surface shows the intensity of the interfering laser. (b) The isosurface of the proton density at the target surface at
,
and
ps, respectively. (c) A read-out laser irradiates the SPH, is diffracted by the SPH, duplicates the vortex phase of the object laser and converts it to an ultra-intense vortex laser in the focus.
3 Simulation results
3.1 Surface plasma hologram formation
The object laser and the reference laser interfere on the target surface, resulting in the formation of a standing wave electromagnetic field with a specific distribution. Figure 3(a) shows the transverse distribution of the electric field
Figure 3.(a) The transverse distribution of electric fields of the interference laser at
. (b) The intensity distribution of the interference laser and its transverse ponderomotive force at
at
. (c) The distribution of electron density and (d) the difference between electron density and proton density
at
. The density distributions of (e) electrons and (f) protons at
at
.
3.2 Vortex phase reconstruction
Since the SPH is formed by the laser irradiation on the target, the depth of the SPHs is therefore positively correlated with the energy deposited by the interference laser, that is,
Figures 4(a)–4(d) respectively present the predicted and simulated phase profiles of the object laser, as well as the laser electric field derived from the phase. The helical phase distribution and the corresponding electric field pattern of the object laser are evident from the figures, demonstrating a strong agreement between the theoretical predictions and simulation results. By the use of data processing algorithms, one can further enhance the precision and accuracy of the phase reconstruction[53]. Accurate vortex phase information is crucial for understanding precise electron dynamics in the vortex-laser–plasma interaction. As far as we know, it is the first time that such a precise method for reconstructing the phase of relativistic vortex lasers has been given, which is of significance for generating high-quality relativistic vortex lasers in the laboratory and holds significant implications for relativistic vortex-laser–plasma interaction experiments. For example, spatiotemporal vortex lasers, which possess AM perpendicular to the optical axis, have attracted widespread interest due to their significant potential in generating and accelerating isolated ultrashort electron bunch[54]. This proposed method can be applied in detecting the phase distributions of relativistic structured lasers such as spatiotemporal vortex lasers, representing an indispensable aspect of experimental investigation into the interactions between relativistic structured lasers and plasmas[54].
Figure 4.The reconstructed phase profiles of the object laser obtained through (a) theoretical calculations and (b) numerical simulations, as well as the laser electric fields obtained through (c) theoretical calculations and (d) numerical simulations.
We also considered the cases of a higher-order mode laser and oblique incidence of the object laser. When
3.3 Ultra-intense vortex-laser generation
When the SPH is formed, the read-out laser is incident from the left-hand side of the simulation box at
Figure 5.(a) 3D isosurface distribution of the electric field at
. The (
,
) projection plane on the right-hand side is taken at
. The (
,
) projection plane of laser intensity at the bottom is taken at
, and the (
,
) projection plane at the rearside is taken at
. (b)–(d) The distribution of the transverse electric field
at different cross-sections ranging from
to
at
(simulation results). (e)–(g) Same as (b)–(d) but from Fresnel–Kirchhoff’s diffraction formula.
where
Meanwhile, the output laser is focused near
Figure 6.(a) Transverse distribution of the vortex laser intensity at at
. (b) Laguerre–Gaussian (LG) mode spectrum at
at
. (c) Evolution of the laser total angular momentum (AM) (black line) and energy conversion efficiency to the vortex-laser pulse (red line). (d) Evolution of the averaged AM of laser photons. Here the gray area marks the stage when the laser is in the focal volume.
In order to investigate the weights of different modes in the output vortex laser, we select a cross-section of the electric field
4 Discussion
To investigate the effects of the laser parameters on the SPHs and the generation of output vortex lasers, we vary the parameters of the interference laser in the (
Figure 7.(a) The averaged depth of the SPHs in the (,
) plane. (b) The ratio of output vortex-laser intensity to the incident read-out laser intensity (
/
) in the (
,
) plane. Scaling of the laser total AM (
, black circles), the energy conversion efficiency to the vortex laser (
, red circles) and the ratio of output vortex-laser intensity to the incident read-out laser intensity (
, blue circles) (c) with regard to the laser electric field amplitude
and (d) the focus spot size
of the incident read-out laser.
We also considered the effects of target material and laser pre-pulses on the SPH formation. As the modulation of target surface plasma is driven by the ponderomotive force of the interference laser and the charge separation fields, the charge-to-mass ratio of ions significantly affects the time required for plasma density modulation. Ions with lower charge-to-mass ratios require a longer modulation time. Taking hydrocarbon targets, for example, a longer duration of laser pulses is required to achieve effective modulation of SPHs (see the
Finally, we investigate the effects of the parameters of the read-out laser on the vortex-laser generation. Figure 7(c) shows the scaling of the output vortex-laser AM (
5 Conclusion
In summary, we demonstrate the generation of SPHs by the interference of a vortex laser and a Gaussian laser on the plasma target surface, and confirm its capability of reconstructing the vortex phase and generating ultra-intense vortex lasers. 3D-PIC simulation results indicate that the generated ultra-intense vortex laser possesses ultra-high intensity (
[1] D. Strickland, G. Mourou. Opt. Commun., 55, 447(1985).
[2] G. Mourou. Rev. Mod. Phys., 91, 030501(2019).
[3] E. Esarey, C. B. Schroeder, W. P. Leemans. Rev. Mod. Phys., 81, 1229(2009).
[4] A. Macchi, M. Borghesi, M. Passoni. Rev. Mod. Phys., 85, 751(2013).
[5] W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z. Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang, C. Wang, X. Yang, F. Wu, Y. Leng, J. Liu, R. Li, Z. Xu. Nature, 595, 516(2021).
[6] G. Gregori, A. Ravasio, C. D. Murphy, K. Schaar, A. Baird, A. R. Bell, A. Benuzzi-Mounaix, R. Bingham, C. Constantin, R. P. Drake, M. Edwards, E. T. Everson, C. D. Gregory, Y. Kuramitsu, W. Lau, J. Mithen, C. Niemann, H.-S. Park, B. A. Remington, B. Reville, A. P. L. Robinson, D. D. Ryutov, Y. Sakawa, S. Yang, N. C. Woolsey, M. Koenig, F. Miniati. Nature, 481, 480(2012).
[7] B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya. Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, J. Fuchs. Science, 346, 325(2014).
[8] X. Xu, Y. Zhang, H. Zhang, H. Lu, W. Zhou, C. Zhou, B. Dromey, S. Zhu, M. Zepf, X. He, B. Qiao. Optica, 7, 355(2020).
[9] A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey, T. Döppner, L. Divol, M. Hohenberger, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman. Nature, 601, 542(2022).
[10] T. Yu, K. Liu, J. Zhao, X. Zhu, Y. Lu, Y. Cao, H. Zhang, F. Shao, Z. Sheng. Rev. Mod. Plasma Phys., 8, 24(2024).
[11] C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, P. Martin. Nat. Phys., 3, 424(2007).
[12] J. Ren, W. Cheng, S. Li, S. Suckewer. Nat. Phys., 3, 732(2007).
[13] R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, P. A. Norreys. Nat. Phys., 7, 87(2011).
[14] D. Turnbull, P. Michel, T. Chapman, E. Tubman, B. B. Pollock, C. Y. Chen, C. Goyon, J. S. Ross, L. Divol, N. Woolsey, J. D. Moody. Phys. Rev. Lett., 116, 205001(2016).
[15] A. Leblanc, A. Denoeud, L. Chopineau, G. Mennerat, P. Martin, F. Quéré. Nat. Phys., 13, 440(2017).
[16] G. Lehmann, K. H. Spatschek. Phys. Rev. Lett., 116, 225002(2016).
[17] G. Lehmann, K. H. Spatschek. Phys. Rev. E, 100, 033205(2019).
[18] M. R. Edwards, V. R. Munirov, A. Singh, N. M. Fasano, E. Kur, N. Lemos, J. M. Mikhailova, J. S. Wurtele, P. Michel. Phys. Rev. Lett., 128, 065003(2022).
[19] M. R. Edwards, S. Waczynski, E. Rockafellow, L. Manzo, A. Zingale, P. Michel, H. M. Milchberg. Optica, 10, 1587(2023).
[20] Y. X. Wang, S. M. Weng, P. Li, Z. C. Shen, X. Y. Jiang, J. Huang, X. L. Zhu, H. H. Ma, X. B. Zhang, X. F. Li, Z. M. Sheng, J. Zhang. High Power Laser Sci. Eng., 11, e37(2023).
[21] M. S. Hur, B. Ersfeld, H. Lee, H. Kim, K. Roh, Y. Lee, H. S. Song, M. Kumar, S. Yoffe, D. A. Jaroszynski, H. Suk. Nat. Photonics, 17, 1074(2023).
[22] C. Riconda, S. Weber. Matter Radiat. Extrem., 8, 023001(2023).
[23] Y. Shi, X. Zhang, A. Arefiev, B. Shen. Sci. China Phys. Mech. Astronomy, 67, 295201(2024).
[24] E. Hemsing, A. Marinelli. Phys. Rev. Lett., 109, 224801(2012).
[25] E. Hemsing, A. Knyazik, M. Dunning, D. Xiang, A. Marinelli, C. Hast, J. B. Rosenzweig. Nat. Phys., 9, 549(2013).
[26] J. Vieira, J. T. Mendonça. Phys. Rev. Lett., 112, 215001(2014).
[27] X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, Z. Xu. Phys. Rev. Lett., 114, 173901(2015).
[28] L. Zhang, B. Shen, X. Zhang, S. Huang, Y. Shi, C. Liu, W. Wang, J. Xu, Z. Pei, Z. Xu. Phys. Rev. Lett., 117, 113904(2016).
[29] Y. Shi, J. Vieira, R. M. G. M. Trines, R. Bingham, B. F. Shen, R. J. Kingham. Phys. Rev. Lett., 121, 145002(2018).
[30] L. X. Hu, T. P. Yu, H. Z. Li, Y. Yin, P. McKenna, F. Q. Shao. Opt. Lett., 43, 2615(2018).
[31] W. P. Wang, C. Jiang, B. F. Shen, F. Yuan, Z. M. Gan, H. Zhang, S. H. Zhai, Z. Z. Xu. Phys. Rev. Lett., 122, 024801(2019).
[32] W. P. Wang, C. Jiang, H. Dong, X. M. Lu, J. F. Li, R. J. Xu, Y. J. Sun, L. H. Yu, Z. Guo, X. Y. Liang, Y. X. Leng, R. X. Li, Z. Z. Xu. Phys. Rev. Lett., 125, 034801(2020).
[33] L. B. Ju, T. W. Huang, R. Li, K. Jiang, C. N. Wu, H. Zhang, S. Z. Wu, M. Y. Yu, B. Qiao, S. P. Zhu, C. T. Zhou, S. C. Ruan. Nucl. Fusion, 61, 066006(2021).
[34] H. Zhang, J. Zhao, Y. Hu, Q. Li, Y. Lu, Y. Cao, D. Zou, Z. Sheng, F. Pegoraro, P. McKenna, F. Shao, T. Yu. High Power Laser Sci. Eng., 9, e43(2021).
[35] J. Zhao, Y. Hu, Y. Lu, H. Zhang, L. Hu, X. Zhu, Z. Sheng, I. C. E. Turcu, A. Pukhov, F. Shao, T. Yu. Commun. Phys., 5, 15(2022).
[36] Y. Shi, D. R. Blackman, P. Zhu, A. Arefiev. High Power Laser Sci. Eng., 10, e45(2022).
[37] Y. Ji, C. Lian, Y. Shi, R. Yan, S. Cao, C. Ren, J. Zheng. Phys. Rev. Res., 5, L022025(2023).
[38] Y. Wu, X. Xu, C. Zhang, Z. Nie, M. Sinclair, A. Farrell, K. A. Marsh, J. Hua, W. Lu, W. B. Mori, C. Joshi. Phys. Rev. Res., 5, L012011(2023).
[39] S. Jin, Y. L. Yao, B. F. Lei, G. Y. Chen, C. T. Zhou, S. P. Zhu, X. T. He, B. Qiao. New J. Phys., 25, 093030(2023).
[40] Y. Guo, X. Zhang, D. Xu, X. Guo, B. Shen, K. Lan. Matter Radiat. Extrem., 8, 035902(2023).
[41] Y. Shi, B. Shen, L. Zhang, X. Zhang, W. Wang, Z. Xu. Phys. Rev. Lett., 112, 235001(2014).
[42] J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, L. O. Silva. Nat. Commun., 7, 10371(2016).
[43] K. Qu, Q. Jia, N. J. Fisch. Frontiers in Optics 2017(2017).
[44] T. Long, C. Zhou, L. Ju, T. Huang, M. Yu, K. Jiang, C. Wu, S. Wu, H. Zhang, B. Qiao, S. Ruan, X. He. Phys. Rev. Res., 2, 033145(2020).
[45] H. Zhang, Q. Li, C. Zheng, J. Zhao, Y. Lu, D. Li, X. Xu, K. Liu, Y. Tian, Y. Lin, F. Zhang, T. Yu. Opt. Express, 30, 29388(2022).
[46] Y. Wu, C. Zhang, Z. Nie, M. Sinclair, A. Farrell, K. A. Marsh, E. P. Alves, F. Tsung, W. B. Mori, C. Joshi. Commun. Phys., 7, 18(2024).
[47] A. Longman, C. Salgado, G. Zeraouli, J. I. Apiñaniz, J. A. Pérez-Hernández, M. K. Eltahlawy, L. Volpe, R. Fedosejevs. Opt. Lett., 45, 2187(2020).
[48] Z. Chen, S. Zheng, X. Lu, X. Wang, Y. Cai, C. Wang, M. Zheng, Y. Ai, Y. Leng, S. Xu, D. Fan. High Power Laser Sci. Eng., 10, e32(2022).
[49] K. Dai, Q. Cui, J. Zhang. Light. Sci. Appl., 13, 162(2024).
[50] L. B. Kevin, A. S. Eddy, C W. Scott, E. Y. Peter, T. G. Donald, W. T. Jack, A. S. Dennis, S. O. Scot. Opt. Lett., 29, 47(2004).
[51] H. Huang, Y. Ren, Y. Yan, N. Ahmed, Y. Yue, A. Bozovich, B. I. Erkmen, K. Birnbaum, S. Dolinar, M. Tur, A. E. Willner. Opt. Lett., 38, 2348(2013).
[52] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, C. P. Ridgers. Plasma Phys. Control. Fusion, 57, 113001(2015).
[53] V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, P. Ferraro. Light. Sci. Appl., 7, 48(2018).
[54] F. Sun, W. Wang, H. Dong, J. He, Z. Shi, Z. Lv, Q. Zhan, Y. Leng, S. Zhuang, R. Li. Phys. Rev. Res., 6, 013075(2024).
[55] D. Ress, L. B. DaSilva, R. A. London, J. E. Trebes, S. Mrowka, R. J. Procassini, T. W. Barbee, D. E. Lehr. Science, 265, 514(1994).
[56] R. Tommasini, O. L. Landen, L. Berzak Hopkins, S. P. Hatchett, D. H. Kalantar, W. W. Hsing, D. A. Alessi, S. L. Ayers, S. D. Bhandarkar, M. W. Bowers, D. K. Bradley, A. D. Conder, J. M. Di Nicola, P. Di Nicola, L. Divol, D. Fittinghoff, G. Gururangan, G. N. Hall, M. Hamamoto, D. R. Hargrove, E. P. Hartouni, J. E. Heebner, S. I. Herriot, M. R. Hermann, J. P. Holder, D. M. Holunga, D. Homoelle, C. A. Iglesias, N. Izumi, A. J. Kemp, T. Kohut, J. J. Kroll, K. LaFortune, J. K. Lawson, R. Lowe-Webb, A. J. MacKinnon, D. Martinez, N. D. Masters, M. P. Mauldin, J. Milovich, A. Nikroo, J. K. Okui, J. Park, M. Prantil, L. J. Pelz, M. Schoff, R. Sigurdsson, P. L. Volegov, S. Vonhof, T. L. Zobrist, R. J. Wallace, C. F. Walters, P. Wegner, C. Widmayer, W. H. Williams, K. Youngblood, M. J. Edwards, M. C. Herrmann. Phys. Rev. Lett., 125, 155003(2020).
[57] K. L. Baker. Opt. Lett., 31, 730(2006).
[58] D. G. Jang, M. S. Kim, I. H. Nam, H. S. Uhm, H. Suk. Appl. Phys. Lett., 99, 141502(2011).
Get Citation
Copy Citation Text
Hao Zhang, Lingyu Zhang, Hongtao Huang, Jingyi Wang, Yuanjie Yang, Wenhui Tang, Tongpu Yu. Intense vortex-laser generation and phase detection by surface plasma holograms[J]. High Power Laser Science and Engineering, 2025, 13(1): 010000e2
Category: Research Articles
Received: Nov. 5, 2024
Accepted: Jan. 14, 2025
Published Online: Feb. 26, 2025
The Author Email: Tongpu Yu (tongpu@nudt.edu.cn)