Flattening crystals into the atomic limit is a way to study model systems of such as superconducting quantum phase transitions in two dimensions (2D),[
Chinese Physics B, Volume. 29, Issue 9, (2020)
Flattening is flattering: The revolutionizing 2D electronic systems
Two-dimensional (2D) crystals are known to have no bulk but only surfaces and edges, thus leading to unprecedented properties thanks to the quantum confinements. For half a century, the compression of z-dimension has been attempted through ultra-thin films by such as molecular beam epitaxy. However, the revisiting of thin films becomes popular again, in another fashion of the isolation of freestanding 2D layers out of van der Waals (vdW) bulk compounds. To date, nearly two decades after the nativity of the great graphene venture, researchers are still fascinated about flattening, into the atomic limit, all kinds of crystals, whether or not they are vdW. In this introductive review, we will summarize some recent experimental progresses on 2D electronic systems, and briefly discuss their revolutionizing capabilities for the implementation of future nanostructures and nanoelectronics.
1. Introduction
Flattening crystals into the atomic limit is a way to study model systems of such as superconducting quantum phase transitions in two dimensions (2D),[
In early 2000s, researchers discovered that graphene, a free-standing single layer of graphite, can be obtained through a couple of rather simple methods including Scotch tape exfoliation[
When looking back to the above history, a question comes up naturally: what is the definition of a real 2D? To some extent, 2D physics thrives based on thin films (including vdW atomic layers), yet 2D systems are often disputable because of a lack of pure two dimensions that can be strictly achieved experimentally. It seems that a thin film will always have a certain thickness, even at the atomic level. Indeed, theories used to predict the non-existence of any ideal 2D crystals at finite temperatures.[
A simplified view to describe the dimension crossover from 3D to 2D system is a slab model as given in Fig. 1. Carriers are free to move in the xy plane of the slab, but confined to a potential well along the z direction. The quasi-two-dimensional carriers in a well of size d will have discrete energy bands, for example, as shown in Fig. 1(b), at kx = ky = 0 the eigenvalues are given by
Figure 1.(a) Schematic 2D structure with
Recent experiment showed that, in as thick as 100 nm graphite samples (usually considered as 3D bulk), clear signatures of quantum Hall (a scenario that is supposed to happen only in 2D systems) can still be observed,[
Figure 2.(a) The QHE measured in a 6-nm-thick graphite flake at 0.25 K. (b) Schematic illustrations of electron trajectories under different conditions, (c) Energy gaps for the so-called 2.5D QHE as a function of thickness.[
The QHE behavior is also reported in other 3D systems such as bulk topological semimetal Cd3As2 where the conventional 1D chiral Landau cyclotron orbits at the QHE regime can be re-constructed via connected anti-symmetric Fermi-arcs on opposite surfaces of the sample,[
With a clear definition of 2D in mind, one can summarize the revolutionizing nature of a freestanding 2D crystal (or, more specifically, 2D vdW layers), as illustrated in Fig. 3. Taking the 2D electronic system as an example, free electrons (Fig. 3(a)) are confined in a flat playground, which behavior as 2D gases or liquid depending on the strength of e–e interaction.[
Figure 3.Schematic illustrations of (a) free 2D electrons, (b) interlayer-interacted 2D electrons, (c) correlated 2D electrons, and (d) twisted 2D electronic systems.
2. New matters created when confined in 2D
Apparently, one of the noticeable achievements, in the great hunting of 2D crystals, is the discovery of a total new category of matters that exist in 2D, with distinct crystallographic arrangement and physical properties as compared to their forms in any other dimensionality. For example, the 2D form of group 14 elemental materials, silicene, germanene, and stanene, were proved to have distinguishing structural and electronic properties from their bulk ones.[
As 2D crystals have two surfaces, their top and bottom surfaces can actually be of different chemical compositions. It is thus forming the famed 2D Janus material – a new matter that is believed to hold great promise for such as ferroelectricity thanks to the very low lattice symmetry.[
3. Flattening functional materials into the 2D limit
Graphene and few-layered transitional metal dichalcogenides are two examples of the 2D crystals widely studied in the community since more than a decade ago.[
Correlated two-dimensional electrons can also lead to quantum states such as 2D superconductors. As depicted by the 2D XY model, when cooled below the superconducting critical temperature, the 2D superconducting system will first go into a BKT dissipating phase in usually rather wide temperature range, before reaching a zero resistance ground state where vortices and anti-vortices are paired.[
Later on, thanks to the h-BN encapsulation in inert atmosphere, few layers with low air-stability isolated from intrinsic superconducting vdW materials were able to be assembled into nano-devices and go through the nano-fabrication process.[
Interestingly, the influence of underlying substrates can as well be a strong factor to affect the properties of 2D functional materials. For example, single layer FeSe film grown on SrTiO3 (001) substrate exhibits a superconducting transition temperature of ∼ 110 K (Figs. 4(a) and 4(b)), which is one order of magnitude higher than its bulk value.[
Figure 4.(a), (b) FeSe monolayer epitaxially grown on SrTiO3(001) substrate, showing superconducting transition temperature above 100 K.[
As discussed in the introduction part of this review, to be 2D or not, it does not really depend on whether the crystal is monolayer – it is rather a physical limit to pursue, even for non-vdW crystals. Indeed, to demonstrate the freestanding unit cell limit of the non-vdW perovskite crystal SrTiO3 or BiFeO3, a water soluble sacrificial buffer layer Sr3Al2O6 was introduced to finish the removal of substrate via the assistant of a polymer stamp (Figs. 4(c) and 4(d)).[
In many cases, flattening of a vdW crystal requires special effort as sometimes it is extremely difficult to tackle with because of both air-instability and quite strong inter-layer vdW bonding. For example, the cuperates high temperature superconductors, such as Bi2Sr2CaCu2O8 + δ (BSCCO), are known to be of vdW type. However, their thin layers degrade in air rapidly due to moisture and the loss of oxygen, and they are not easily-exfoliated. A dedicated Al2O3-assisted method was invented to overcome the later problem,[
Recently, MnBi2Te4 was found to be a co-host topological insulator and anti-ferromagnetic inter-layer coupling. When thinned down to the 2D limit with an odd number of layers, the system behaves as an Ising-type ferromagnetic topological insulator (MTI). The spontaneously broken time-reversal symmetry opens a gap at the gapless Dirac point, leading to the observation of a quantum anomalous Hall effect with chiral edge channels from both top and bottom surfaces at moderate magnetic fields close to the gap (Fig. 5(a)), as well as the observation of the conventional quantum Hall effects at higher magnetic fields and higher doping levels (Fig. 5(b)).[
Figure 5.Magnetic hysteresis loops measured in a 5-layered MnBi2Te4, with Hall resistance
Apparently, magnetic topological insulators or magnetic Weyl semimetals have become outstanding platforms to investigate exotic quantum states in the 2D limit.[
4. Inter-layer interactions of 2D crystals
Inter-layer coupling in 2D vertical stacks is another widely studied phenomenon. For example, in TMDs, the optical response is dominated by intra-layer excitons, which are electron–hole paired quasi-particles due to the Coulomb interaction. When interfaced together, two pieces of TMDCs with different intrinsic doping levels give rise to a strong out-of-plane electric field, which results in a larger binding energy and longer lifetime for the interlayer excitons.[
Electronically speaking, separated double layer 2D electrons are also expected to yield exotic physics, due to long range Coulomb interactions when the spacing between them is small enough. In addition, the absence of interlayer tunneling significantly enhances the exciton lifetime. Typical experiment can be described in Fig. 6(a), in which two layers of 2D electrons are separated by a thin vacuum of spacing d, where current flow in one layer induces electrical signal in another, defined as a drag system. Here, the drag can happen between interlayer charges, spins, and other quasiparticles.[
Figure 6.(a) Schematic picture of a drag system with two separated 2D electrons. (b) Schematic picture of a GaAs/AlGaAs double quantum well sample.[
The 2D insulating hexagonal boron nitride (h-BN) can act as an ideal spacer between the two drive-drag 2D electron layers. The thickness of h-BN can be tuned by simply choosing an appropriate number of layers, down to the single layer limit (0.34 nm). Furthermore, when encapsulated by h-BN, the carrier mobility of graphene can be much boosted as compared to that supported directly on SiO2 wafers because of the clean and flat interface.[
Indeed, as shown in Figs. 6(c) and 6(d), graphene double-layer was found to show strong frictional drag at zero magnetic field, especially the drag signal became strongest at low density near the charge neutrality.[
5. Twistronics in rotatedly assembled 2D crystals
On the other hand, non-separated double layer systems can also yield bountiful exotic physics in electronic transport. When stacked together, two pieces of 2D crystal can form a moiré superlattice. For example, at the interface of graphene and h-BN, the moiré wavelength λ is defined as
Graphene continues to amaze when considering the simplest case – by rotating-&-stacking two monolayered graphene with a certain angle, the consequential graphene–graphene (or twisted bilayer graphene TBLG) moiré superlattice will yield counter intuitive states including insulating,[
Figure 7.(a) Schematic picture of a TBLG. (b) Illustration of the electronic band structure of a flat band (blue) induced by the magic angle moiré superlattice. (c) Schematic picture of the moiré superlattice with their stacking order marked with colors. A full filling of the mini flat band corresponds to 4 electrons in the moiré unit cell originated from the 4-fold degeneracy. (d) Summarization of state-of-the-art experimentally observed correlated quantum states in TBLG with the rotation close to the magic angle.
TBLG with 1.8° rotation angle was first studied in 2016, and insulating states (corresponding to a single particle gap opening of 50–60 meV) were found at the Γs of the mini Brillouin zone induced by the moiré superlattice.[
Superconducting domes (with superconducting behavior possibly close to the crossover between BCS and BEC condensate) can be found slightly doped away from half filling. By examining the conductance evolution in parameter space of carrier density n and temperature T, it is seen that the magic angle TBLG system has a very similar phase diagram as that of high temperature superconductors.[
Surprisingly, at 3/4 filling of the flat mini band, anomalous Hall signature was observed in the TBLG system at base temperature, with a hint of chiral edge state.[
To unveil the underlying physics, visualization of the local density of states and charge distribution in magic angle TBLG was studied via scanning tunneling microscopy and spectroscopy (STM/STS).[
The above emerging correlated quantum states (summarized in Fig. 7(d)), such as Chern insulator, superconducting condensate, and ferromagnetism, are also found in the flat band formed between a tri-layered ABC-stacking graphene and h-BN,[
6. Conclusion and going beyond the flat crystals
As discussed above, flattened crystals have shown tremendous opportunities for studying fundamental physics. They also act as promising candidates for the implementation of future nanoelectronics. For example, by dual gating both top and bottom surfaces of a few-layered TMDC channel, photoswitching logic and memory can be integrated in a single small footprint device (Fig. 8(a)).[
Figure 8.(a) Schematic picture of a double gate programmable MoS2 transistor, which is capable to integrate photoswitching logic and memory in a single cell.[
Noticeably, renewed efforts are being devoted to prepare 2D crystals recently, such as large scale production of high quality 2D single crystals, direct assembly of 2D heterostructures in a mass production manner, and new routes for engineering their electrical properties.[
At this point, we would like to come to an end of this brief review article. As inspired by brain-experiments proposed by Feynman in early 1950s that there are plenty of rooms at the bottom,[
[1] S L Sondhi, S M Girvin, J P Carini, D Shahar. Rev. Mod. Phys, 69, 315(1997).
[2] A Kapitulnik, S A Kivelson, B Spivak. Rev. Mod. Phys, 91(2019).
[3] F Withers, O Del Pozo-Zamudio, A Mishchenko, A P Rooney, A Gholinia, K Watanabe, T Taniguchi, S J Haigh, A K Geim, A I Tartakovskii, K S Novoselov. Nat. Mater, 14, 301(2015).
[4] V Tayari, N Hemsworth, I Fakih, A Favron, E Gaufrès, G Gervais, R Martel, T Szkopek. Nat. Commun, 6, 7702(2015).
[5] H Fang, H A Bechtel, E Plis, M C Martin, S Krishna, E Yablonovitch, A Javey. Proc. Natl. Acad. Sci. USA, 110(2013).
[6] M Heiblum, M V Fischetti, W P Dumke, D J Frank, I M Anderson, C M Knoedler, L Osterling. Phys. Rev. Lett, 58, 816(1987).
[7] K Chang, J Liu, H Lin, N Wang, K Zhao, A Zhang, F Jin, Y Zhong, X Hu, W Duan, Q Zhang, L Fu, Q K Xue, X Chen, S H Ji. Science, 353, 274(2016).
[8] X Li, B Dong, X Sun, H Wang, T Yang, G Yu, Z Vitto Han. Journal of Semiconductors, 40(2019).
[9] Y Yu, L Ma, P Cai, R Zhong, C Ye, J Shen, G D Gu, X H Chen, Y Zhang. Nature, 575, 156(2019).
[10] Z Wang, T Zhang, M Ding, B Dong, Y Li, M Chen, X Li, J Huang, H Wang, X Zhao, Y Li, D Li, C Jia, L Sun, H Guo, Y Ye, D Sun, Y Chen, T Yang, J Zhang, S Ono, Z Han, Z Zhang. Nat. Nanotechnol, 13, 554(2018).
[11] S Jiang, J Shan, K F Mak. Nat. Mater, 17, 406(2018).
[12] Y Cao, V Fatemi, S Fang, K Watanabe, T Taniguchi, E Kaxiras, P Jarillo-Herrero. Nature, 556, 43(2018).
[13] Y Cao, V Fatemi, A Demir, S Fang, S L Tomarken, J Y Luo, J D Sanchez-Yamagishi, K Watanabe, T Taniguchi, E Kaxiras, R C Ashoori, P Jarillo-Herrero. Nature, 556, 80(2018).
[14] Y Cao, J Y Luo, V Fatemi, S Fang, J D Sanchez-Yamagishi, K Watanabe, T Taniguchi, E Kaxiras, P Jarillo-Herrero. Phys. Rev. Lett, 117(2016).
[15] L Wang, Y Gao, B Wen, Z Han, T Taniguchi, K Watanabe, M Koshino, J Hone, C R Dean. Science, 350, 1231(2015).
[16] K Komatsu, Y Morita, E Watanabe, D Tsuya, K Watanabe, T Taniguchi, S Moriyama. Sci. Adv, 4(2018).
[17] J R A AY Cho. Progress in Solid State Chemistry, 10, 157(1975).
[18] K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Science, 306, 666(2004).
[19] X Li, W Cai, J An, S Kim, J Nah, D Yang, R Piner, A Velamakanni, I Jung, E Tutuc, S K Banerjee, L Colombo, R S Ruoff. Science, 324, 1312(2009).
[20] N Mounet, M Gibertini, P Schwaller, D Campi, A Merkys, A Marrazzo, T Sohier, I E Castelli, A Cepellotti, G Pizzi, N Marzari. Nat. Nanotechnol, 13, 246(2018).
[21] L Landau. Phys. Z. Sowjetunion, 11, 26(1937).
[22] N D Mermin. Phys. Rev, 176, 250(1968).
[23] R Peierls. Annales de l’institut Henri Poincaré, 5, 177(1935).
[24] A K Geim, K S Novoselov. Nat. Mater, 6, 183(2007).
[25] P Strange. Relativistic quantum machanics(1998).
[26] J Yin, S Slizovskiy, Y Cao, S Hu, Y Yang, I Lobanova, B A Piot, S K Son, S Ozdemir, T Taniguchi, K Watanabe, K S Novoselov, F Guinea, A K Geim, V Fal’ko, A Mishchenko. Nat. Phys, 15, 437(2019).
[27] C Zhang, Y Zhang, X Yuan, S Lu, J Zhang, A Narayan, Y Liu, H Zhang, Z Ni, R Liu, E S Choi, A Suslov, S Sanvito, L Pi, H Z Lu, A C Potter, F Xiu. Nature, 565, 331(2019).
[28] F Tang, Y Ren, P Wang, R Zhong, J Schneeloch, S A Yang, K Yang, P A Lee, G Gu, Z Qiao, L Zhang. Nature, 569, 537(2019).
[29] E McCann, M Koshino. Rep. Prog. Phys, 76(2013).
[30] L Levitov, G Falkovich. Nat. Phys, 12, 672(2016).
[31] K S Novoselov, A Mishchenko, A Carvalho, A H Castro Neto. Science, 353(2016).
[32] H Wang, M L Chen, M Zhu, Y Wang, B Dong, X Sun, X Zhang, S Cao, X Li, J Huang, L Zhang, W Liu, D Sun, Y Ye, K Song, J Wang, Y Han, T Yang, H Guo, C Qin, L Xiao, J Zhang, J Chen, Z Han, Z Zhang. Nat. Commun, 10, 2302(2019).
[33] T Yokoya, T Kiss, A Chainani, S Shin, M Nohara, H Takagi. Science, 294, 2518(2001).
[34] J M Lu, O Zheliuk, I Leermakers, N F Q Yuan, U Zeitler, K T Law, J T Ye. Science, 350, 1353(2015).
[35] M M Ugeda, A J Bradley, Y Zhang, S Onishi, Y Chen, W Ruan, C Ojeda-Aristizabal, H Ryu, M T Edmonds, H Z Tsai, A Riss, S K Mo, D Lee, A Zettl, Z Hussain, Z X Shen, M F Crommie. Nat. Phys, 12, 92(2015).
[36] Y Saito, T Nojima, Y Iwasa. Nat. Rev. Mater, 2(2016).
[37] Y Zhang, H Wang, F Li, X Sun, B Dong, X Li, Z V Han, T Yang, H Zhang. Science China Information Sciences, 62(2019).
[38] B Huang, G Clark, E Navarro-Moratalla, D R Klein, R Cheng, K L Seyler, D Zhong, E Schmidgall, M A McGuire, D H Cobden, W Yao, D Xiao, P Jarillo-Herrero, X Xu. Nature, 546, 270(2017).
[39] Y Deng, Y Yu, Y Song, J Zhang, N Z Wang, Z Sun, Y Yi, Y Z Wu, S Wu, J Zhu, J Wang, X H Chen, Y Zhang. Nature, 563, 94(2018).
[40] C Gong, L Li, Z Li, H Ji, A Stern, Y Xia, T Cao, W Bao, C Wang, Y Wang, Z Q Qiu, R J Cava, S G Louie, J Xia, X Zhang. Nature, 546, 265(2017).
[41] C Gong, X Zhang. Science, 363(2019).
[42] M Yankowitz, Q Ma, P Jarillo-Herrero, B J LeRoy. Nat. Rev. Phys, 1, 112(2019).
[43] M Yankowitz, S Chen, H Polshyn, Y Zhang, K Watanabe, T Taniguchi, D Graf, A F Young, C R Dean. Science, 363, 1059(2019).
[44] T Hartman, Z Sofer. ACS Nano, 13, 8566(2019).
[45] M E Davila, L Xian, S Cahangirov, A Rubio, G Le Lay. New J. Phys, 16(2014).
[46] L Tao, E Cinquanta, D Chiappe, C Grazianetti, M Fanciulli, M Dubey, A Molle, D Akinwande. Nat. Nanotechnol, 10, 227(2015).
[47] P Vogt, P De Padova, C Quaresima, J Avila, E Frantzeskakis, M C Asensio, A Resta, B Ealet, G Le Lay. Phys. Rev. Lett, 108(2012).
[48] A Fleurence, R Friedlein, T Ozaki, H Kawai, Y Wang, Y Yamada-Takamura. Phys. Rev. Lett, 108(2012).
[49] F F Zhu, W J Chen, Y Xu, C L Gao, D D Guan, C H Liu, D Qian, S C Zhang, J F Jia. Nat. Mater, 14, 1020(2015).
[50] S Balendhran, S Walia, H Nili, S Sriram, M Bhaskaran. Small, 11, 640(2015).
[51] A Molle, J Goldberger, M Houssa, Y Xu, S C Zhang, D Akinwande. Nat. Mater, 16, 163(2017).
[52] J Deng, B Xia, X Ma, H Chen, H Shan, X Zhai, B Li, A Zhao, Y Xu, W Duan, S C Zhang, B Wang, J G Hou. Nat. Mater, 17, 1081(2018).
[53] L Chen, C C Liu, B Feng, X He, P Cheng, Z Ding, S Meng, Y Yao, K Wu. Phys. Rev. Lett, 109(2012).
[54] C L Lin, R Arafune, K Kawahara, M Kanno, N Tsukahara, E Minamitani, Y Kim, M Kawai, N Takagi. Phys. Rev. Lett, 110(2013).
[55] L Meng, Y Wang, L Zhang, S Du, R Wu, L Li, Y Zhang, G Li, H Zhou, W A Hofer, H J Gao. Nano Lett, 13, 685(2013).
[56] L Li, S Z Lu, J Pan, Z Qin, Y Q Wang, Y Wang, G Y Cao, S Du, H J Gao. Adv. Mater, 26, 4820(2014).
[57] E J BERGHOLTZ, Z LIU. Inter. J. Mod. Phys. B, 27(2013).
[58] M E Davila, A Marele, P De Padova, I Montero, F Hennies, A Pietzsch, M N Shariati, J M Gomez-Rodriguez, G Le Lay. Nanotechnology, 23(2012).
[59] L Tsetseris, D Kaltsas. Phys. Chem. Chem. Phys, 16, 5183(2014).
[60] C C Liu, W Feng, Y Yao. Phys. Rev. Lett, 107(2011).
[61] Y Xu, B Yan, H J Zhang, J Wang, G Xu, P Tang, W Duan, S C Zhang. Phys. Rev. Lett, 111(2013).
[62] C C Liu, H Jiang, Y Yao. Phys. Rev. B, 84(2011).
[63] Y Ma, Y Dai, M Guo, C Niu, B Huang. J. Phys. Chem. C, 116(2012).
[64] M Liao, Y Zang, Z Guan, H Li, Y Gong, K Zhu, X P Hu, D Zhang, Y Xu, Y Y Wang, K He, X C Ma, S C Zhang, Q K Xue. Nat. Phys, 14, 344(2018).
[65] J Falson, Y Xu, M Liao, Y Zang, K Zhu, C Wang, Z Zhang, H Liu, W Duan, K He, H Liu, J H Smet, D Zhang, Q K Xue. Science, 367, 1454(2020).
[66] A Y Lu, H Zhu, J Xiao, C P Chuu, Y Han, M H Chiu, C C Cheng, C W Yang, K H Wei, Y Yang, Y Wang, D Sokaras, D Nordlund, P Yang, D A Muller, M Y Chou, X Zhang, L J Li. Nat. Nanotechnol, 12, 744(2017).
[67] J Zhang, S Jia, I Kholmanov, L Dong, D Er, W Chen, H Guo, Z Jin, V B Shenoy, L Shi, J Lou. ACS Nano, 11, 8192(2017).
[68] R Li, Y Cheng, W Huang. Small, 14(2018).
[69] H Cheng, Y Zhou, Y Feng, W Geng, Q Liu, W Guo, L Jiang. Adv. Mater, 29(2017).
[70] L Dong, J Lou, V B Shenoy. ACS Nano, 11, 8242(2017).
[71] F Li, W Wei, P Zhao, B Huang, Y Dai. J. Phys. Chem. Lett, 8, 5959(2017).
[72] C Cui, F Xue, W J Hu, L J Li. npj 2D Materials and Applications, 2, 1(2018).
[73] D Jariwala, V K Sangwan, L J Lauhon, T J Marks, M C Hersam. ACS Nano, 8, 1102(2014).
[74] S Zhao, B Dong, H Wang, H Wang, Y Zhang, Z V Han, H Zhang. Nanoscale Advances, 2, 109(2020).
[75] M Arai, R Moriya, N Yabuki, S Masubuchi, K Ueno, T Machida. Appl. Phys. Lett, 107(2015).
[76] S A Wolf, D D Awschalom, R A Buhrman, J M Daughton, S von Molnar, M L Roukes, A Y Chtchelkanova, D M Treger. Science, 294, 1488(2001).
[77] F Amet, J R Williams, A G F Garcia, M Yankowitz, K Watanabe, T Taniguchi, D Goldhaber-Gordon. Phys. Rev. B, 85(2012).
[78] W Han, R K Kawakami, M Gmitra, J Fabian. Nat. Nanotechnol, 9, 794(2014).
[79] E E Vdovin, A Mishchenko, M T Greenaway, M J Zhu, D Ghazaryan, A Misra, Y Cao, S V Morozov, O Makarovsky, T M Fromhold, A Patane, G J Slotman, M I Katsnelson, A K Geim, K S Novoselov, L Eaves. Phys. Rev. Lett, 116(2016).
[80] D Ghazaryan, M T Greenaway, Z Wang, V H Guarochico-Moreira, I J Vera-Marun, J Yin, Y Liao, S V Morozov, O Kristanovski, A I Lichtenstein, M I Katsnelson, F Withers, A Mishchenko, L Eaves, A K Geim, K S Novoselov, A Misra. Nat. Electron, 1, 344(2018).
[81] D R Klein, D MacNeill, J L Lado, D Soriano, E Navarro-Moratalla, K Watanabe, T Taniguchi, S Manni, P Canfield, J Fernandez-Rossier, P Jarillo-Herrero. Science, 360, 1218(2018).
[82] T Song, X Cai, M W Tu, X Zhang, B Huang, N P Wilson, K L Seyler, L Zhu, T Taniguchi, K Watanabe, M A McGuire, D H Cobden, D Xiao, W Yao, X Xu. Science, 360, 1214(2018).
[83] X Cai, T Song, N P Wilson, G Clark, M He, X Zhang, T Taniguchi, K Watanabe, W Yao, D Xiao, M A McGuire, D H Cobden, X Xu. Nano Lett, 19, 3993(2019).
[84] H H Kim, B Yang, S Tian, C Li, G X Miao, H Lei, A W Tsen. Nano Lett, 19, 5739(2019).
[85] L Liu, C F Pai, Y Li, H W Tseng, D C Ralph, R A Buhrman. Science, 336, 555(2012).
[86] G Yu, P Upadhyaya, Y Fan, J G Alzate, W Jiang, K L Wong, S Takei, S A Bender, L T Chang, Y Jiang, M Lang, J Tang, Y Wang, Y Tserkovnyak, P K Amiri, K L Wang. Nat. Nanotechnol, 9, 548(2014).
[87] M Alghamdi, M Lohmann, J Li, P R Jothi, Q Shao, M Aldosary, T Su, B P T Fokwa, J Shi. Nano Lett, 19, 4400(2019).
[88] O Johansen, V Risinggard, A Sudbo, J Linder, A Brataas. Phys. Rev. Lett, 122(2019).
[89] X Wang, J Tang, X Xia, C He, J Zhang, Y Liu, C Wan, C Fang, C Guo, W Yang, Y Guang, X Zhang, H Xu, J Wei, M Liao, X Lu, J Feng, X Li, Y Peng, H Wei, R Yang, D Shi, X Zhang, Z Han, Z Zhang, G Zhang, G Yu, X Han. Sci. Adv, 5(2019).
[90] S M Poh, S J R Tan, H Wang, P Song, I H Abidi, X Zhao, J Dan, J Chen, Z Luo, S J Pennycook, A H Castro Neto, K P Loh. Nano Lett, 18, 6340(2018).
[91] R Fei, W Kang, L Yang. Phys. Rev. Lett, 117(2016).
[92] W Ding, J Zhu, Z Wang, Y Gao, D Xiao, Y Gu, Z Zhang, W Zhu. Nat. Commun, 8(2017).
[93] Y Zhou, D Wu, Y Zhu, Y Cho, Q He, X Yang, K Herrera, Z Chu, Y Han, M C Downer, H Peng, K Lai. Nano Lett, 17, 5508(2017).
[94] C Cui, W J Hu, X Yan, C Addiego, W Gao, Y Wang, Z Wang, L Li, Y Cheng, P Li, X Zhang, H N Alshareef, T Wu, W Zhu, X Pan, L J Li. Nano Lett, 18, 1253(2018).
[95] J Xiao, H Zhu, Y Wang, W Feng, Y Hu, A Dasgupta, Y Han, Y Wang, D A Muller, L W Martin, P Hu, X Zhang. Phys. Rev. Lett, 120(2018).
[96] F Xue, W Hu, K C Lee, L S Lu, J Zhang, H L Tang, A Han, W T Hsu, S Tu, W H Chang, C H Lien, J H He, Z Zhang, L J Li, X Zhang. Adv. Funct. Mater, 28(2018).
[97] C Zheng, L Yu, L Zhu, J L Collins, D Kim, Y Lou, C Xu, M Li, Z Wei, Y Zhang, M T Edmonds, S Li, J Seidel, Y Zhu, J Z Liu, W X Tang, M S Fuhrer. Sci. Adv, 4(2018).
[98] S Yuan, X Luo, H L Chan, C Xiao, Y Dai, M Xie, J Hao. Nat. Commun, 10, 1775(2019).
[99] Z Fei, W Zhao, T A Palomaki, B Sun, M K Miller, Z Zhao, J Yan, X Xu, D H Cobden. Nature, 560, 336(2018).
[100] X Xu, Z Zhang, L Qiu, J Zhuang, L Zhang, H Wang, C Liao, H Song, R Qiao, P Gao, Z Hu, L Liao, Z Liao, D Yu, E Wang, F Ding, H Peng, K Liu. Nat. Nanotechnol, 11, 930(2016).
[101] Z Cai, B Liu, X Zou, H M Cheng. Chem. Rev, 118, 6091(2018).
[102] Y Zhang, Y Yao, M G Sendeku, L Yin, X Zhan, F Wang, Z Wang, J He. Adv. Mater, 31(2019).
[103] T A Chen, C P Chuu, C C Tseng, C K Wen, H S P Wong, S Pan, R Li, T A Chao, W C Chueh, Y Zhang, Q Fu, B I Yakobson, W H Chang, L J Li. Nature, 579, 219(2020).
[104] J Li, X Yang, Y Liu, B Huang, R Wu, Z Zhang, B Zhao, H Ma, W Dang, Z Wei, K Wang, Z Lin, X Yan, M Sun, B Li, X Pan, J Luo, G Zhang, Y Liu, Y Huang, X Duan, X Duan. Nature, 579, 368(2020).
[105] Y Huang, Y H Pan, R Yang, L H Bao, L Meng, H L Luo, Y Q Cai, G D Liu, W J Zhao, Z Zhou, L M Wu, Z L Zhu, M Huang, L W Liu, L Liu, P Cheng, K H Wu, S B Tian, C Z Gu, Y G Shi, Y F Guo, Z G Cheng, J P Hu, L Zhao, G H Yang, E Sutter, P Sutter, Y L Wang, W Ji, X J Zhou, H J Gao. Nat. Commun, 11, 2453(2020).
[106] Y Huang, E Sutter, N N Shi, J Zheng, T Yang, D Englund, H J Gao, P Sutter. ACS Nano, 9(2015).
[107] C Gong, E M Kim, Y Wang, G Lee, X Zhang. Nat. Commun, 10, 2657(2019).
[108] Y Lai, Z Song, Y Wan, M Xue, C Wang, Y Ye, L Dai, Z Zhang, W Yang, H Du, J Yang. Nanoscale, 11, 5163(2019).
[109] D Costanzo, S Jo, H Berger, A F Morpurgo. Nat. Nanotechnol, 11, 339(2016).
[110] Y Xing, H M Zhang, H L Fu, H Liu, Y Sun, J P Peng, F Wang, X Lin, X C Ma, Q K Xue, J Wang, X C Xie. Science, 350, 542(2015).
[111] M J Zhu, A V Kretinin, M D Thompson, D A Bandurin, S Hu, G L Yu, J Birkbeck, A Mishchenko, I J Vera-Marun, K Watanabe, T Taniguchi, M Polini, J R Prance, K S Novoselov, A K Geim, M Ben Shalom. Nat. Commun, 8(2017).
[112] Z Han, A Allain, H Arjmandi-Tash, K Tikhonov, M Feigel’man, B Sacépé, V Bouchiat. Nat. Phys, 10, 380(2014).
[113] S Hart, H Ren, T Wagner, P Leubner, M Mühlbauer, C Brüne, H Buhmann, L W Molenkamp, A Yacoby. Nat. Phys, 10, 638(2014).
[114] J F Ge, Z L Liu, C Liu, C L Gao, D Qian, Q K Xue, Y Liu, J F Jia. Nat. Mater, 14, 285(2015).
[115] D Ji, S Cai, T R Paudel, H Sun, C Zhang, L Han, Y Wei, Y Zang, M Gu, Y Zhang, W Gao, H Huyan, W Guo, D Wu, Z Gu, E Y Tsymbal, P Wang, Y Nie, X Pan. Nature, 570, 87(2019).
[116] Y Cao, A Mishchenko, G L Yu, E Khestanova, A P Rooney, E Prestat, A V Kretinin, P Blake, M B Shalom, C Woods, J Chapman, G Balakrishnan, I V Grigorieva, K S Novoselov, B A Piot, M Potemski, K Watanabe, T Taniguchi, S J Haigh, A K Geim, R V Gorbachev. Nano Lett, 15, 4914(2015).
[117] Z Wu, S Xu, H Lu, A Khamoshi, G B Liu, T Han, Y Wu, J Lin, G Long, Y He, Y Cai, Y Yao, F Zhang, N Wang. Nat. Commun, 7(2016).
[118] A W Tsen, B Hunt, Y D Kim, Z J Yuan, S Jia, R J Cava, J Hone, P Kim, C R Dean, A N Pasupathy. Nat. Phys, 12, 208(2015).
[119] I Tamir, A Benyamini, E J Telford, F Gorniaczyk, A Doron, T Levinson, D Wang, F Gay, B Sacepe, J Hone, K Watanabe, T Taniguchi, C R Dean, A N Pasupathy, D Shahar. Sci. Adv, 5(2019).
[120] M N H Shawulienu Kezilebieke, Viliam Vaňo, Markus Aapro, Somesh C Ganguli, Orlando J Silveira, Szczepan Głodzik, Adam S Foster, Teemu Ojanen, Peter Liljeroth(2020).
[121] H Lin, Q Zhu, D Shu, D Lin, J Xu, X Huang, W Shi, X Xi, J Wang, L Gao. Nat. Mater, 18, 602(2019).
[122] L Veyrat, C Deprez, A Coissard, X Li, F Gay, K Watanabe, T Taniguchi, Z Han, B A Piot, H Sellier, B Sacepe. Science, 367, 781(2020).
[123] W Luo, M Zhu, G Peng, X Zheng, F Miao, S Bai, X A Zhang, S Qin. Adv. Funct. Mater, 28(2018).
[124] T Liu, S Liu, K H Tu, H Schmidt, L Chu, D Xiang, J Martin, G Eda, C A Ross, S Garaj. Nat. Nanotechnol, 14, 223(2019).
[125] X Wang, P Wang, J Wang, W Hu, X Zhou, N Guo, H Huang, S Sun, H Shen, T Lin, M Tang, L Liao, A Jiang, J Sun, X Meng, X Chen, W Lu, J Chu. Adv. Mater, 27, 6575(2015).
[126] Y Deng, Y Yu, M Z Shi, Z Guo, Z Xu, J Wang, X H Chen, Y Zhang. Science, 367, 895(2020).
[127] B Chen, F Fei, D Zhang, B Zhang, W Liu, S Zhang, P Wang, B Wei, Y Zhang, Z Zuo, J Guo, Q Liu, Z Wang, X Wu, J Zong, X Xie, W Chen, Z Sun, S Wang, Y Zhang, M Zhang, X Wang, F Song, H Zhang, D Shen, B Wang. Nat. Commun, 10, 4469(2019).
[128] J Wang, Y Xu, Y Wu, T Luo, H Li, J Li, Y Liu, J Ge. National Science Review(2020).
[129] E Liu, Y Sun, N Kumar, L Muchler, A Sun, L Jiao, S Y Yang, D Liu, A Liang, Q Xu, J Kroder, V Suss, H Borrmann, C Shekhar, Z Wang, C Xi, W Wang, W Schnelle, S Wirth, Y Chen, S T B Goennenwein, C Felser. Nat. Phys, 14, 1125(2018).
[130] T C Berkelbach, D R Reichman. Annual Review of Condensed Matter Physics, 9, 379(2018).
[131] Y Liu, Y Gao, S Zhang, J He, J Yu, Z Liu. Nano Research, 12, 2695(2019).
[132] K Tran, G Moody, F Wu, X Lu, J Choi, K Kim, A Rai, D A Sanchez, J Quan, A Singh, J Embley, A Zepeda, M Campbell, T Autry, T Taniguchi, K Watanabe, N Lu, S K Banerjee, K L Silverman, S Kim, E Tutuc, L Yang, A H MacDonald, X Li. Nature, 567, 71(2019).
[133] C Jin, E C Regan, A Yan, M Iqbal Bakti Utama, D Wang, S Zhao, Y Qin, S Yang, Z Zheng, S Shi, K Watanabe, T Taniguchi, S Tongay, A Zettl, F Wang. Nature, 567, 76(2019).
[134] E M Alexeev, D A Ruiz-Tijerina, M Danovich, M J Hamer, D J Terry, P K Nayak, S Ahn, S Pak, J Lee, J I Sohn, M R Molas, M Koperski, K Watanabe, T Taniguchi, K S Novoselov, R V Gorbachev, H S Shin, V I Fal’ko, A I Tartakovskii. Nature, 567, 81(2019).
[135] A Tartakovskii. Nature Reviews Physics, 2, 8(2019).
[136] P Rivera, H Yu, K L Seyler, N P Wilson, W Yao, X Xu. Nat. Nanotechnol, 13, 1004(2018).
[137] Z Wang, D A Rhodes, K Watanabe, T Taniguchi, J C Hone, J Shan, K F Mak. Nature, 574, 76(2019).
[138] M M Fogler, L V Butov, K S Novoselov. Nat. Commun, 5, 4555(2014).
[139] J I A Li, T Taniguchi, K Watanabe, J Hone, A Levchenko, C R Dean. Phys. Rev. Lett, 117(2016).
[140] K Lee, J Xue, D C Dillen, K Watanabe, T Taniguchi, E Tutuc. Phys. Rev. Lett, 117(2016).
[141] J P Eisenstein. Annual Review of Condensed Matter Physics, 5, 159(2014).
[142] J I A Li, T Taniguchi, K Watanabe, J Hone, C R Dean. Nat. Phys, 13, 751(2017).
[143] E M Hankiewicz, G Vignale. J. Phys.: Condens. Matter, 21(2009).
[144] C P Weber, N Gedik, J E Moore, J Orenstein, J Stephens, D D Awschalom. Nature, 437, 1330(2005).
[145] B N Narozhny, A Levchenko. Rev. Mod. Phys, 88(2016).
[146] L Zheng, A H MacDonald. Phys. Rev. B, 48, 8203(1993).
[147] R V Gorbachev, A K Geim, M I Katsnelson, K S Novoselov, T Tudorovskiy, I V Grigorieva, A H MacDonald, S V Morozov, K Watanabe, T Taniguchi, L A Ponomarenko. Nat. Phys, 8, 896(2012).
[148] X M Liu, K Watanabe, T Taniguchi, B I Halperin, P Kim. Nat. Phys, 13, 746(2017).
[149] A Perali, D Neilson, A R Hamilton. Phys. Rev. Lett, 110(2013).
[150] J I A Li, T Taniguchi, K Watanabe, J Hone, C R Dean. Nat. Phys, 13, 751(2017).
[151] A F Croxall, K Das Gupta, C A Nicoll, M Thangaraj, H E Beere, I Farrer, D A Ritchie, M Pepper. Phys. Rev. Lett, 101(2008).
[152] L L Lev, I O Maiboroda, M A Husanu, E S Grichuk, N K Chumakov, I S Ezubchenko, I A Chernykh, X Wang, B Tobler, T Schmitt, M L Zanaveskin, V G Valeyev, V N Strocov. Nat. Commun, 9, 2653(2018).
[153] C R Dean, A F Young, I Meric, C Lee, L Wang, S Sorgenfrei, K Watanabe, T Taniguchi, P Kim, K L Shepard, J Hone. Nat. Nanotechnol, 5, 722(2010).
[154] X Liu, Z Hao, K Watanabe, T Taniguchi, B I Halperin, P Kim. Nat. Phys, 15, 893(2019).
[155] J I A Li, Q Shi, Y Zeng, K Watanabe, T Taniguchi, J Hone, C R Dean. Nat. Phys, 15, 898(2019).
[156] J P Eisenstein, A H Macdonald. Nature, 432, 691(2004).
[157] M Yankowitz, J Xue, D Cormode, J D Sanchez-Yamagishi, K Watanabe, T Taniguchi, P Jarillo-Herrero, P Jacquod, B J LeRoy. Nat. Phys, 8, 382(2012).
[158] L A Ponomarenko, R V Gorbachev, G L Yu, D C Elias, R Jalil, A A Patel, A Mishchenko, A S Mayorov, C R Woods, J R Wallbank, M Mucha-Kruczynski, B A Piot, M Potemski, I V Grigorieva, K S Novoselov, F Guinea, V I Fal’ko, A K Geim. Nature, 497, 594(2013).
[159] B Hunt, J D Sanchez-Yamagishi, A F Young, M Yankowitz, B J LeRoy, K Watanabe, T Taniguchi, P Moon, M Koshino, P Jarillo-Herrero, R C Ashoori. Science, 340, 1427(2013).
[160] S Y Zhou, G H Gweon, J Graf, A V Fedorov, C D Spataru, R D Diehl, Y Kopelevich, D H Lee, S G Louie, A Lanzara. Nat. Phys, 2, 595(2006).
[161] S Wu, L Wang, Y Lai, W Y Shan, G Aivazian, X Zhang, T Taniguchi, K Watanabe, D Xiao, C Dean, J Hone, Z Li, X Xu. Sci. Adv, 2(2016).
[162] W Yang, G Chen, Z Shi, C C Liu, L Zhang, G Xie, M Cheng, D Wang, R Yang, D Shi, K Watanabe, T Taniguchi, Y Yao, Y Zhang, G Zhang. Nat. Mater, 12, 792(2013).
[163] R Ribeiro-Palau, C J Zhang, K Watanabe, T Taniguchi, J Hone, C R Dean. Science, 361, 690(2018).
[164] M Liao, Z W Wu, L Du, T Zhang, Z Wei, J Zhu, H Yu, J Tang, L Gu, Y Xing, R Yang, D Shi, Y Yao, G Zhang. Nat. Commun, 9, 4068(2018).
[165] T Chari, R Ribeiro-Palau, C R Dean, K Shepard. Nano Lett, 16, 4477(2016).
[166] A L Sharpe, E J Fox, A W Barnard, J Finney, K Watanabe, T Taniguchi, M A Kastner, D Goldhaber-Gordon. Science, 365, 605(2019).
[167] R Bistritzer, A H MacDonald. Proc. Natl. Acad. Sci, 108(2011).
[168] M N Manaf, I Santoso, A Hermanto. AIP Conference Proceedings, 1677(2015).
[169] E Suárez Morell, J D Correa, P Vargas, M Pacheco, Z Barticevic. Phys. Rev. B, 82(2010).
[170] J M B Lopes dos Santos, N M R Peres, A H Castro Neto. Phys. Rev. B, 86(2012).
[171] S Carr, D Massatt, S Fang, P Cazeaux, M Luskin, E Kaxiras. Phys. Rev. B, 95(2017).
[172] H S Aror, R Polski, Y R Zhang, A Thomson, Choi Youngjoon, H Kim, Z Lin, I Z Wilson, X D Xu, J H Chu, K Watanabe, T Taniguchi, J Alicea, S Nadj-Perge(2020).
[173] X Lu, P Stepanov, W Yang, M Xie, M A Aamir, I Das, C Urgell, K Watanabe, T Taniguchi, G Zhang, A Bachtold, A H MacDonald, D K Efetov. Nature, 574, 653(2019).
[174] M Serlin, C L Tschirhart, H Polshyn, Y Zhang, J Zhu, K Watanabe, T Taniguchi, L Balents, A F Young. Science, 367, 900(2020).
[175] Y Choi, J Kemmer, Y Peng, A Thomson, H Arora, R Polski, Y Zhang, H Ren, J Alicea, G Refael, F von Oppen, K Watanabe, T Taniguchi, S Nadj-Perge. Nat. Phys, 15, 1174(2019).
[176] Y Jiang, X Lai, K Watanabe, T Taniguchi, K Haule, J Mao, E Y Andrei. Nature, 573, 91(2019).
[177] A Kerelsky, L J McGilly, D M Kennes, L Xian, M Yankowitz, S Chen, K Watanabe, T Taniguchi, J Hone, C Dean, A Rubio, A N Pasupathy. Nature, 572, 95(2019).
[178] Y Xie, B Lian, B Jack, X Liu, C L Chiu, K Watanabe, T Taniguchi, B A Bernevig, A Yazdani. Nature, 572, 101(2019).
[179] A Uri, S Grover, Y Cao, J A Crosse, K Bagani, D Rodan-Legrain, Y Myasoedov, K Watanabe, T Taniguchi, P Moon, M Koshino, P Jarillo-Herrero, E Zeldov. Nature, 581, 47(2020).
[180] G Chen, A L Sharpe, E J Fox, Y H Zhang, S Wang, L Jiang, B Lyu, H Li, K Watanabe, T Taniguchi, Z Shi, T Senthil, D Goldhaber-Gordon, Y Zhang, F Wang. Nature, 579, 56(2020).
[181] B L Chittari, G Chen, Y Zhang, F Wang, J Jung. Phys. Rev. Lett, 122(2019).
[182] G Chen, A L Sharpe, P Gallagher, I T Rosen, E J Fox, L Jiang, B Lyu, H Li, K Watanabe, T Taniguchi, J Jung, Z Shi, D Goldhaber-Gordon, Y Zhang, F Wang. Nature, 572, 215(2019).
[183] G Chen, L Jiang, S Wu, B Lyu, H Li, B L Chittari, K Watanabe, T Taniguchi, Z Shi, J Jung, Y Zhang, F Wang. Nat. Phys, 15, 237(2019).
[184] E Codecido, Q Wang, R Koester, S Che, H Tian, R Lv, S Tran, K Watanabe, T Taniguchi, F Zhang, M Bockrath, C N Lau. Sci. Adv, 5(2019).
[185] S Moriyama, Y Morita, K Komatsu, K Endo, T Iwasaki, S Nakaharai, Y Noguchi, Y Wakayama, E Watanabe, D Tsuya, K Watanabe, T Taniguchi(2019).
[186] X M Liu, Z Hao, E Khalaf, J Y Lee, K Watanabe, T Taniguchi, A Vishwanath, P Kim(2019).
[187] D R L Yuan Cao, Oriol Rubies-Bigorda, Jeong Min Park, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero. Nature, 7, 154(2019).
[188] C Shen, Q S Wu, L Na, S P Wang, Y C Zhao, J Tang, J Y Liu, J P Tian, K Watanabe, T Taniguchi, R Yang, Z Y Meng, D X Shi, Oleg V Yazyev, G Y Zhang. Nat. Phys, 16, 520(2019).
[189] H Chen, X L Zhang, Y Y Zhang, D Wang, D L Bao, Y Que, W Xiao, S Du, M Ouyang, S T Pantelides, H J Gao. Science, 365, 1036(2019).
[190] K T Tsai, X Zhang, Z Zhu, Y Luo, S Carr, M Luskin, E Kaxiras, K Wang(2019).
[191] S Chen, M He, Y H Zhang, V Hsieh, Z Y Fei, K Watanabe, T Taniguchi, D H Cobden, X Xu, C R Dean, M Yankowitz(2020).
[192] L Balents, C R Dean, D K Efetov, A F Young. Nat. Phys, 16, 725(2020).
[193] X Lu, B Lian, G Chaudhary, B A Piot, G Romagnoli, K Watanabe, T Taniguchi, M Poggio, A H MacDonald, B A Bernevig, D K Efetov(2020).
[194] L J McGilly, A Kerelsky, N R Finney, K Shapovalov, E M Shih, A Ghiotto, Y Zeng, S L Moore, W Wu, Y Bai, K Watanabe, T Taniguchi, M Stengel, L Zhou, J Hone, X Zhu, D N Basov, C Dean, C E Dreyer, A N Pasupathy. Nat. Nanotechnol, 15, 580(2020).
[195] A Weston, Y Zou, V Enaldiev, A Summerfield, N Clark, V Zolyomi, A Graham, C Yelgel, S Magorrian, M Zhou, J Zultak, D Hopkinson, A Barinov, T H Bointon, A Kretinin, N R Wilson, P H Beton, V I Fal’ko, S J Haigh, R Gorbachev. Nat. Nanotechnol, 15, 592(2020).
[196] Y Cao, D Rodan-Legrain, J M Park, F N Yuan, K Watanabe, T Taniguchi, R M Fernandes, L Fu, P Jarillo-Herrero(2020).
[197] P Rickhaus, F d Vries, J Zhu, E Portolés, G Zheng, M Masseroni, A Kurzmann, T Taniguchi, K Wantanabe, A H MacDonald, T Ihn, K Ensslin(2020).
[198] F Wu, T Lovorn, E Tutuc, I Martin, A H MacDonald. Phys. Rev. Lett, 122(2019).
[199] C Zhang, C P Chuu, X Ren, M Y Li, L J Li, C Jin, M Y Chou, C K Shih. Sci. Adv, 3(2017).
[200] M L Lin, Q H Tan, J B Wu, X S Chen, J H Wang, Y H Pan, X Zhang, X Cong, J Zhang, W Ji, P A Hu, K H Liu, P H Tan. ACS Nano, 12, 8770(2018).
[201] L Wang, E M Shih, A Ghiotto, L Xian, D A Rhodes, C Tan, M Claassen, D M Kennes, Y Bai, B Kim, K Watanabe, T Taniguchi, X Zhu, J Hone, A Rubio, A N Pasupathy, C R Dean. Nat. Mater, 19, 861(2020).
[202] Q Tong, F Liu, J Xiao, W Yao. Nano Lett, 18, 7194(2018).
[203] Y Tang, L Li, T Li, Y Xu, S Liu, K Barmak, K Watanabe, T Taniguchi, A H MacDonald, J Shan, K F Mak. Nature, 579, 353(2020).
[204] E C Regan, D Wang, C Jin, M I Bakti Utama, B Gao, X Wei, S Zhao, W Zhao, Z Zhang, K Yumigeta, M Blei, J D Carlström, K Watanabe, T Taniguchi, S Tongay, M Crommie, A Zettl, F Wang. Nature, 579, 359(2020).
[205] C Liu, H Chen, X Hou, H Zhang, J Han, Y G Jiang, X Zeng, D W Zhang, P Zhou. Nat. Nanotechnol, 14, 662(2019).
[206] A Gao, J Lai, Y Wang, Z Zhu, J Zeng, G Yu, N Wang, W Chen, T Cao, W Hu, D Sun, X Chen, F Miao, Y Shi, X Wang. Nat. Nanotechnol, 14, 217(2019).
[207] G J Wu, B B Tian, L Liu, W Lv, S Wu, X D Wang, Y Chen, J Y Li, Z Wang, S Q Wu, H Shen, T Lin, P Zhou, Q Liu, C G Duan, S T Zhang, X J Meng, S W Wu, W D Hu, X R Wang, J H Chu, J L Wang. Nat. Electron, 3, 43(2020).
[208] M L Chen, X Sun, H Liu, H Wang, Q Zhu, S Wang, H Du, B Dong, J Zhang, Y Sun, S Qiu, T Alava, S Liu, D M Sun, Z Han. Nat. Commun, 11, 1205(2020).
[209] L Wang, X Xu, L Zhang, R Qiao, M Wu, Z Wang, S Zhang, J Liang, Z Zhang, Z Zhang, W Chen, X Xie, J Zong, Y Shan, Y Guo, M Willinger, H Wu, Q Li, W Wang, P Gao, S Wu, Y Zhang, Y Jiang, D Yu, E Wang, X Bai, Z J Wang, F Ding, K Liu. Nature, 570, 91(2019).
[210] L Gao, W Ren, H Xu, L Jin, Z Wang, T Ma, L P Ma, Z Zhang, Q Fu, L M Peng, X Bao, H M Cheng. Nat. Commun, 3, 699(2012).
[211] Z Shi, X Wang, Q Li, P Yang, G Lu, R Jiang, H Wang, C Zhang, C Cong, Z Liu, T Wu, H Wang, Q Yu, X Xie. Nat. Commun, 11, 849(2020).
[212] M Zeng, J Liu, L Zhou, R G Mendes, Y Dong, M Y Zhang, Z H Cui, Z Cai, Z Zhang, D Zhu, T Yang, X Li, J Wang, L Zhao, G Chen, H Jiang, M H Rummeli, H Zhou, L Fu. Nat. Mater, 19, 528(2020).
[213] S Li, Y C Lin, W Zhao, J Wu, Z Wang, Z Hu, Y Shen, D M Tang, J Wang, Q Zhang, H Zhu, L Chu, W Zhao, C Liu, Z Sun, T Taniguchi, M Osada, W Chen, Q H Xu, A T S Wee, K Suenaga, F Ding, G Eda. Nat. Mater, 17, 535(2018).
[214] L Xu, P Zhang, H Jiang, X Wang, F Chen, Z Hu, Y Gong, L Shang, J Zhang, K Jiang, J Chu. Small, 15(2019).
[215] Y Xu, X Shi, Y Zhang, H Zhang, Q Zhang, Z Huang, X Xu, J Guo, H Zhang, L Sun, Z Zeng, A Pan, K Zhang. Nat. Commun, 11, 1330(2020).
[216] Z Chen, C Xu, C Ma, W Ren, H M Cheng. Adv. Mater, 25, 1296(2013).
[217] X Xu, S Chen, S Liu, X Cheng, W Xu, P Li, Y Wan, S Yang, W Gong, K Yuan, P Gao, Y Ye, L Dai. J. Am. Chem. Soc, 141, 2128(2019).
[218] Y Sun, Z Sun, S Gao, H Cheng, Q Liu, J Piao, T Yao, C Wu, S Hu, S Wei, Y Xie. Nat. Commun, 3, 1057(2012).
[219] S J Kim, K Choi, B Lee, Y Kim, B H Hong. Annual Review of Materials Research, 45, 63(2015).
[220] Z Du, S Yang, S Li, J Lou, S Zhang, S Wang, B Li, Y Gong, L Song, X Zou, P M Ajayan. Nature, 577, 492(2020).
[221] R P Feynman. Phys. Rev, 80, 440(1950).
Get Citation
Copy Citation Text
Baojuan Dong, Teng Yang, Zheng Han. Flattening is flattering: The revolutionizing 2D electronic systems[J]. Chinese Physics B, 2020, 29(9):
Received: Mar. 23, 2020
Accepted: --
Published Online: Apr. 29, 2021
The Author Email: Teng Yang (vitto.han@gmail.com)