International Journal of Extreme Manufacturing, Volume. 1, Issue 1, 12002(2019)

Laser synthesis and functionalization of nanostructures

Costas P Grigoropoulo*
Author Affiliations
  • Laser Thermal Laboratory, Department of Mechanical Engineering, University of California at Berkeley,6129 Etcheverry Hall, Berkeley CA 94720-1740, United States of America
  • show less

    This article summarizes work at the Laser Thermal Laboratory and discusses related studies on the laser synthesis and functionalization of semiconductor nanostructures and two-dimensional (2D) semiconductor materials. Research has been carried out on the laser-induced crystallization of thin films and nanostructures. The in situ transmission electron microscopy (TEM) monitoring of the crystallization of amorphous precursors in nanodomains is discussed herein. The directed assembly of silicon nanoparticles and the modulation of their optical properties by phase switching is presented. The vapor–liquid–solid mechanism has been adopted as a bottom-up approach in the synthesis of semiconducting nanowires (NWs). In contrast to furnace heating methods, laser irradiation offers high spatial selectivity and precise control of the heating mechanism in the time domain. These attributes enabled the investigation of NW nucleation and the early stage of nanostructure growth. Site- and shape-selective, on-demand direct integration of oriented NWs was accomplished. Growth of discrete silicon NWs with nanoscale location selectivity by employing near-field laser illumination is also reported herein. Tuning the properties of 2D transition metal dichalcogenides (TMDCs) by modulating the free carrier type, density, and composition can offer an exciting new pathway to various practical nanoscale electronics. In situ Raman probing of laser-induced processing of TMDC flakes was conducted in a TEM instrument.

    Tools

    Get Citation

    Copy Citation Text

    Costas P Grigoropoulo. Laser synthesis and functionalization of nanostructures[J]. International Journal of Extreme Manufacturing, 2019, 1(1): 12002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Topical Review

    Received: Mar. 12, 2019

    Accepted: --

    Published Online: Jun. 4, 2020

    The Author Email: Costas P Grigoropoulo (cgrigoro@berkeley.edu)

    DOI:10.1088/2631-7990/ab0eca

    Topics