Infrared Technology, Volume. 43, Issue 2, 116(2021)
Composite Current Control Method for Small Inertia Infrared Stable Platforms
Miniaturization and high dynamics are the development trends of infrared imaging stabilization platform technology. Owing to a small moment of inertia, traditional PI(Proportion Integral)-type current loop control cannot completely overcome the slope interference of the back electromotive force(back-EMF), which will reduce the dynamic response of small inertia infrared stable platforms. Concurrently, balancing dynamics and anti-disturbance performance is another difficulty with regard to high dynamic and small inertia infrared stable platform technology. To solve the a forenoted problems, a composite current control method based on dead-beat predictive control and extended state observation(ESO) is proposed in this paper, which effectively improves the dynamic response and anti-disturbance ability of small inertia infrared stable platforms. Simulation and experimental results show that the composite current control method reduces the settling time of the current loop of a small inertia infrared stable platform by 1/3. It also improves the dynamic performance and anti-disturbance performance of the speed response, and has good performance robustness.
Get Citation
Copy Citation Text
XIONG Hui, LIN Yu, ZHANG Yanwei, LI Ruihua, SHU Junyi, YAN Xinjie, FENG Jianwei. Composite Current Control Method for Small Inertia Infrared Stable Platforms[J]. Infrared Technology, 2021, 43(2): 116
Category:
Received: Dec. 21, 2020
Accepted: --
Published Online: Aug. 23, 2021
The Author Email: Hui XIONG (xh1270223693@163.com)
CSTR:32186.14.