Journal of Infrared and Millimeter Waves, Volume. 40, Issue 4, 561(2021)
Plasmon-induced transparency in π-cascade structure of phosphorene
Phosphorene provides a new choice for the construction of optoelectronic devices based on two-dimensional materials because of its adjustable band gap, high carrier mobility and in-plane anisotropy. Plasmon-induced transparency in the π-cascade and compact structure of phosphorene was numerically simulated by the finite difference time domain method. By changing the structure distribution and Fermi energy level of phosphorene and other parameters, a wide range of tunable plasmon-induced transparency from mid-infrared to far-infrared was realized. Among them, the number, intensity and position of transparent windows are flexibly modulated. In addition, the sensitivity of induced transparent window to the angle of polarization is studied. The results provide a reference for the development of biosensors, photo-detectors and optical switches based on the surface plasmon of phosphorene.
Get Citation
Copy Citation Text
Ding-Yang XU, Li HAN, Huai-Zhong XING, Jun-Hao CHU. Plasmon-induced transparency in π-cascade structure of phosphorene[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 561
Category: Research Articles
Received: Oct. 27, 2020
Accepted: --
Published Online: Sep. 9, 2021
The Author Email: Huai-Zhong XING (xinghz@dhu.edu.cn)