Opto-Electronic Engineering, Volume. 48, Issue 6, 210049(2021)

The detection method for coal dust caused by chute discharge based on YOLOv4-tiny

Li Haibin1,2, Sun Yuan1、*, Zhang Wenming2, and Li Yaqian2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less

    The coal port will produce dust in the process of unloading coal by the chute of the ship loader. In order to solve the problem of dust detection, this paper proposes a method of coal dust detection based on deep learning (YOLOv4-tiny). The improved YOLOv4-tiny network is used to train and test the dust data set of chute discharge. Because the detection algorithm cannot get the dust concentration, this paper divides the dust into four categories for detection, and finally counts the area of detection frames of the four categories of dust. After that, the dust concentration is approximately judged through the weighted sum calculation of these data. The experimental results show that the detection accuracy (AP) of four types of dust is 93.98%, 93.57%, 80.03% and 57.43%, the average detection accuracy (mAP) is 81.27% (which is close to 83.38% of YOLOv4), and the detection speed (FPS) is 25.1 (which is higher than 13.4 of YOLOv4). The algorithm can balance the speed and accuracy of dust detection, and can be used for real-time dust detection to improve the efficiency of suppressing coal dust generated by chute discharge.

    Tools

    Get Citation

    Copy Citation Text

    Li Haibin, Sun Yuan, Zhang Wenming, Li Yaqian. The detection method for coal dust caused by chute discharge based on YOLOv4-tiny[J]. Opto-Electronic Engineering, 2021, 48(6): 210049

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Feb. 9, 2021

    Accepted: --

    Published Online: Sep. 4, 2021

    The Author Email: Yuan Sun (2786765531@qq.com)

    DOI:10.12086/oee.2021.210049

    Topics