Intensive experimental and theoretical investigations have been dedicated to the optimization of relativistic electron parameters in relation to ion acceleration[
High Power Laser Science and Engineering, Volume. 8, Issue 2, 02000e15(2020)
Relativistic electron acceleration by surface plasma waves excited with high intensity laser pulses
The process of high energy electron acceleration along the surface of grating targets (GTs) that were irradiated by a relativistic, high-contrast laser pulse at an intensity
1 Introduction
Intensive experimental and theoretical investigations have been dedicated to the optimization of relativistic electron parameters in relation to ion acceleration[
High field plasmonics is one of the new research fields that have synergetically benefited from the advances in laser technology. The possibility of attaining laser radiation fields at intensities exceeding
Furthermore, despite all possible cleaning techniques, the pedestal of very high intensity laser pulses is able to generate a preplasma of finite expansion and of scale length
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
Here, we present an experimental and theoretical study of high energy surface electrons via SPW acceleration from periodically modulated targets (gratings) irradiated by high intensity and high-contrast laser pulses. Our results indicate that the acceleration process of high energy electrons along GTs at laser intensities above
2 Experimental arrangement and methods
The experiments were carried out at the Ti:sapphire Arcturus laser facility of the Heinrich-Heine-University Düsseldorf[
The surface modulations of GTs are very sensitive to the preplasma generated by the rising edge of the laser pulse as only tens of nanometers of preplasma will fill the surface structures. A double stage pulse cleaning system which includes an XPW module[
3 Experimental results
The spatial distributions of the SFEs collected by the 3rd IP of the stack detector (corresponding to electron energies
An overview of the SFE fractions of the total number of accelerated electrons is shown in Figure
In addition, the energy distribution of the fast electrons emitted along the target surface was measured using the magnetic spectrometer placed at
4 Numerical particle-in-cell simulations of surface electron acceleration
The dynamics of surface electron acceleration by laser grating interaction was numerically investigated by using the 2D particle-in-cell (PIC) code EPOCH[
Figure
For the interaction of a low intensity pulse with the GT having a preplasma of
The PIC simulations performed for different scale lengths emphasize the effect of the finite preplasma on the optimum angular shift from the resonant value as well as the sensitivity of the optimum angle on the small variation of the preplasma scale length (in the order of
The angular distributions of the electrons were numerically investigated and the results for GT and FT with the simulation conditions
5 Theoretical modeling of the SPW excitation
In consideration of these results, we revised the linear model of SPWs and its simple scaling of Refs. [
We paid close attention to the SFEs which are driven by the tangential component
6 Summary
In summary, we presented the first experimental evidence showing the efficiency of electron acceleration by SPWs excited by laser pulses at intensities larger than
[1] A. Macchi, A. Sgattoni, S. Sinigardi, M. Borghesi, M. Passoni. Plasma Phys. Control. Fusion, 55(2013).
[2] S. Steinke, A. Henig, M. Schnürer, T. Sokollik, P. V. Nickles, D. Jung, D. Kiefer, R. Hörlein, J. Schreiber, T. Tajima, X. Q. Yan, M. Hegelich, J. Meyer-ter-Vehn, W. Sandner, D. Habs. Laser Part. Beams, 28, 215(2010).
[3] D. Riley. Plasma Phys. Control. Fusion, 60(2018).
[4] M. Bailly-Grandvaux, J. J. Santos, C. Bellei, P. Forestier-Colleoni, S. Fujioka, L. Giuffrida, J. J. Honrubia, D. Batani, R. Bouillaud, M. Chevrot, J. E. Cross, R. Crowston, S. Dorard, J. L. Dubois, M. Ehret, G. Gregori, S. Hulin, S. Kojima, E. Loyez, J. R. Marques, A. Morace, P. Nicolai, M. Roth, S. Sakata, G. Schaumann, F. Serres, J. Servel, V. T. Tikhonchuk, N. Woolsey, Z. Zhang. Nat. Commun., 9, 102(2018).
[5] U. Teubner, P. Gibbon. Rev. Mod. Phys., 81, 445(2009).
[6] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry. Phys. Plasmas, 1, 1626(1994).
[7] R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, M. Zepf. Nature, 412, 798(2001).
[8] I. Prencipe, J. Fuchs, S. Pascarelli, D. W. Schumacher, R. B. Stephens, N. B. Alexander, R. Briggs, M. Büscher, M. O. Cernaianu, A. Choukourov, M. D. Marco, A. Erbe, J. Fassbender, G. Fiquet, P. Fitzsimmons, C. Gheorghiu, J. Hund, L. G. Huang, M. Harmand, N. J. Hartley, A. Irman, T. Kluge, Z. Konopkova, S. Kraft, D. Kraus, V. Leca, D. Margarone, J. Metzkes, K. Nagai, W. Nazarov, P. Lutoslawski, D. Papp, M. Passoni, A. Pelka, J. P. Perin, J. Schulz, M. Smid, C. Spindloe, S. Steinke, R. Torchio, C. Vass, T. Wiste, R. Zaffino, K. Zeil, T. T. U. Schramm, T. E. Cowan. High Power Laser Sci. Eng., 5, e17(2017).
[9] M. Cerchez, M. Swantusch, M. Toncian, X. Zhu, R. Prasad, T. Toncian, C. Rödel, O. Jäckel, G. G. Paulus, A. Andreev, O. Willi. Appl. Phys. Lett., 112(2018).
[10] M. Cerchez, A. L. Giesecke, C. Peth, M. Toncian, B. Albertazzi, J. Fuchs, O. Willi, T. Toncian. Phys. Rev. Lett., 110(2013).
[11] A. L. Giesecke, C. Peth, T. Toncian, O. Willi, M. Cerchez. Laser Part. Beams, 37, 12(2019).
[12] A. Sgattoni, L. Fedeli, G. Cantono, T. Ceccotti, A. Macchi. Plasma Phys. Control. Fusion, 58(2016).
[13] A. Macchi. Phys. Plasmas, 25(2018).
[14] L. Fedeli, A. Formenti, L. Cialfi, A. Sgattoni, G. Cantono, M. Passoni. Plasma Phys. Control. Fusion, 60(2018).
[15] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique. Rep. Prog. Phys., 70, 1(2007).
[16] M. Stockman. Opt. Express, 19(2011).
[17] L. Fedeli, A. Sgattoni, G. Cantono, D. Garzella, F. Réau, I. Prencipe, M. Passoni, M. Raynaud, M. Kveton, J. Proska, A. Macchi, T. Ceccotti. Phys. Rev. Lett., 116(2016).
[18] C. Riconda, M. Raynaud, T. Vialis, M. Grech. Phys. Plasmas, 22(2015).
[19] S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, G. R. Kumar. Phys. Rev. Lett., 101(2008).
[20] P. K. Kaw, J. B. McBride. Phys. Fluids, 13, 1784(1970).
[21] M. Raynaud, J. Kupersztych, C. Riconda, J. Adam, A. Heron. Phys. Plasmas, 14(2007).
[22] A. Bigongiari, M. Raynaud, C. Riconda, A. Héron. Phys. Plasmas, 20(2013).
[23] G. Cantono, A. Sgattoni, L. Fedeli, D. Garzella, F. Reau, C. Riconda, A. Macchi, T. Ceccotti. Phys. Plasmas, 17(2018).
[24] G. Cantono, L. Fedeli, A. Sgattoni, A. Denoeud, L. Chopineau, F. Reau, T. Ceccotti, A. Macchi. Phys. Rev. Lett., 120(2018).
[25] T. Ceccotti, V. Floquet, A. Sgattoni, A. Bigongiari, O. Klimo, M. Raynaud, C. Riconda, A. Heron, F. Baffigi, L. Labate, L. A. Gizzi, L. Vassura, J. Fuchs, M. Passoni, M. Květon, F. Novotny, M. Possolt, J. Prokůpek, J. Proška, J. Pšikal, L. Štolcová, A. Velyhan, M. Bougeard, P. D’Oliveira, O. Tcherbakoff, F. Réau, P. Martin, A. Macchi. Phys. Rev. Lett., 111(2013).
[26] S. Bagchi, P. P. Kiran, W. M. Wang, Z. M. Sheng, M. K. Bhuyan, M. Krishnamurthy, G. R. Kumar. Phys. Plasmas, 19(2012).
[27] M. Kauranen, A. V. Zayats. Nat. Photonics, 6(2012).
[28] C. Liu, V. Tripathi, X. Shao, T. Liu. Phys. Plasmas, 22(2015).
[29] A. A. Andreev, K. Y. Platonov, R. E. E. Salomaa. Phys. Plasmas, 9, 581(2002).
[30] M. Cerchez, R. Prasad, B. Aurand, A. L. Giesecke, S. Spickermann, S. Brauckmann, E. Aktan, M. Swantusch, M. Toncian, T. Toncian, O. Willi. High Power Laser Sci. Eng., 7, e37(2019).
[31] O. Willi, M. Behmke, L. Gezici, B. Hidding, R. Jung, T. Königstein, A. Pipahl, J. Osterholz, G. Pretzler, A. Pukhov, T. Toncian, M. Toncian, M. Heyer, O. Jäckel, M. Kübel, G. G. Paulus, C. Rödel, H. P. Schlenvoigt, W. Ziegler, M. Büscher, A. Feyt, A. Lehrach, H. Ohm, G. Oswald, N. Raab, M. Ruzzo, M. Seltmann, Q. Zhang. Plasma Phys. Control. Fusion, 51(2009).
[32] F. Ingenito, P. Andreoli, D. Batani, G. Boutoux, M. Cipriani, F. Consoli, G. Cristofari, A. Curcio, R. D. Angeli, G. Di Giorgio, J. Ducret, P. Forestier-Colleoni, S. Hulin, K. Jakubowska, N. Rabhi. J. Instrum., 11(2016).
[33] B. Hidding, G. Pretzler, M. Clever, F. Brandl. Rev. Sci. Instrum., 78(2007).
[34] K. A. Tanaka. Rev. Sci. Instrum., 76(2005).
[35] A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens. Rev. Sci. Instrum., 84(2013).
[36] C. Ziener, P. S. Foster, E. J. Divall, C. J. Hooker, M. H. R. Hutchinson, A. J. Langley, D. Neely. J. Appl. Phys., 93, 768(2003).
[37] B. Dromey, S. Kar, M. Zepf, P. Foster. Rev. Sci. Instrum., 75, 645(2004).
[39] M. Behmke, D. an der Bruegge, C. Rödel, M. Cerchez, D. Hemmers, M. Heyer, O. Jäckel, M. Kübel, G. G. Paulus, G. Pretzler, A. Pukhov, M. Toncian, T. Toncian, O. Willi. Phys. Rev. Lett., 106(2011).
[40] M. Chen, Z.-M. Sheng, J. Zhang. Phys. Plasmas, 13(2006).
[41] M. Thevenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quere, J. Faure. Nat. Phys., 12, 355(2016).
[42] Y. T. Li, X. H. Yuan, M. H. Xu, Z. Y. Zheng, Z. M. Sheng, M. Chen, Y. Y. Ma, W. X. Liang, Q. Z. Yu, Y. Zhang, F. Liu, Z. H. Wang, Z. Y. Wei, W. Zhao, Z. Jin, J. Zhang. Phys. Rev. Lett., 96(2006).
[43] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. Evan, H. Schmitz, A. R. Bell, C. Ridgers. Plasma Phys. Control. Fusion, 57(2015).
[44] T. Ma, H. Sawada, P. Patel, C. Chen, L. Divol, D. Higginson, A. Kemp, M. Key, D. Larson, S. L. Pape, A. Link, A. Macphee, H. Mclean, Y. Ping, R. Stephens, S. C. Wilks, F. Beg. Phys. Rev. Lett., 108(2012).
[45] S. C. Wilks, W. L. Kruer, M. Tabak, A. B. Langdon. Phys. Rev. Lett., 69, 1383(1992).
[46] K. A. Ivanov, S. A. Shulyapov, P. A. Ksenofontov, I. N. Tsymbalov, R. V. Volkov, A. B. Savel’ev, A. V. Brantov, V. Y. Bychenkov, A. A. Turinge, A. M. Lapik, A. V. Rusakov, R. M. Djilkibaev, V. C. Nedorezov. Phys. Plasmas, 21(2014).
Get Citation
Copy Citation Text
X. M. Zhu, R. Prasad, M. Swantusch, B. Aurand, A. A. Andreev, O. Willi, M. Cerchez. Relativistic electron acceleration by surface plasma waves excited with high intensity laser pulses[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e15
Category: Research Articles
Received: Jul. 26, 2019
Accepted: Mar. 16, 2020
Posted: Mar. 23, 2020
Published Online: Apr. 30, 2020
The Author Email: M. Cerchez (mirela.cerchez@hhu.de)