Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2215001(2021)

Human’s Dangerous Action Recognition in Petrochemical Scene Using Machine Vision

Bin Yang, Xiao Yun*, Kaiwen Dong, Xixiang Liu, and Han Huang
Author Affiliations
  • School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • show less

    Traditional human action recognition algorithms in petrochemical scenarios focus only on human behaviors and cannot recognize other dangerous behaviors prompted by human-object interactions, such as cell phone calls and smoking. To solve this problem, this paper introduces the object detection mechanism in skeleton-based human action recognition task and proposes a recognition algorithm for human-object interaction using deep learning. First, we used the OpenPose algorithm for pose estimation and then employed the action recognition method to obtain the initial action label. Second, to solve the problems of losing background and semantic informations in traditional methods, the YOLOv3 algorithm was used to detect the objects of interest and obtain their category and location informations. Then, we characterized the human-object interaction relationship by determining the spatial relationship between humans and objects. Finally, a decision-making fusion strategy was proposed, merging the initial action categories of the human, object information, and human-object interaction relationship, to obtain the final action recognition result. Cell phone calls and smoking behaviors were used as examples to verify and analyze the proposed algorithm. Results show that the proposed algorithm can accurately identify dangerous personnel behaviors in a petrochemical scene.

    Tools

    Get Citation

    Copy Citation Text

    Bin Yang, Xiao Yun, Kaiwen Dong, Xixiang Liu, Han Huang. Human’s Dangerous Action Recognition in Petrochemical Scene Using Machine Vision[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2215001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 14, 2020

    Accepted: Jan. 21, 2021

    Published Online: Nov. 5, 2021

    The Author Email: Yun Xiao (yx.tong@163.com)

    DOI:10.3788/LOP202158.2215001

    Topics