The introduction of the chirped pulse amplification (CPA) technique more than thirty years ago[
High Power Laser Science and Engineering, Volume. 7, Issue 3, 03000e56(2019)
Review on TNSA diagnostics and recent developments at SPARC_LAB
Interaction between high-intensity lasers with solid targets is the key process in a wide range of novel laser-based particle accelerator schemes, as well as electromagnetic radiation sources. Common to all the processes is the generation of femtosecond pulses of relativistic electrons emitted from the targets as forerunners of the later-time principal products of the interaction scheme. In this paper, some diagnostics employed in laser–solid matter interaction experiments related to electrons, protons, ions, electromagnetic pulses (EMPs) and X-rays are reviewed. Then, we present our experimental study regarding fast electrons and EMPs utilizing a femtosecond-resolution detector previously adopted only in accelerator facilities.
1 Introduction
The introduction of the chirped pulse amplification (CPA) technique more than thirty years ago[
During this process, multi-MeV range beams[
2 Detection techniques implemented in TNSA experiments
As introduced before, a complete picture of the TNSA is experimentally complicated to realize. Nevertheless, several pieces of experimental evidence were obtained. In this section, we will review the most important diagnostics employed to detect electrons, EMPs and ions/protons produced during such kinds of interaction.
2.1 Plasma density measurements
The first type of measurement was presented in Refs. [
2.2 Probing the quasi-static magnetic fields in plasma
The second type of measurement was presented in Refs. [
2.3 Electromagnetic pulse detection
A target irradiated with a high-power laser pulse blows off a large amount of charge and, in turn, the target itself emits EMPs, owing to the high return current flowing to the ground through the target holder[
2.4 Escaping particle tracking
Other types of measurement presented here regard tracking of the escaping particles: electrons, protons, ions and photons.
2.4.1 Magnetic spectrometer
The first measurements of electrons produced by the interaction between an ultra-short, high-intensity laser and a solid target were presented in 1996 by Ref. [
The use of a dipole spectrometer allows easy detection of charged particles and can resolve their energy spectrum. Nevertheless, there are some drawbacks: in absence of a collimator, the divergence and transverse beam size can affect this measurement; at the same time, the X-rays and
2.4.2 Faraday cup
In a laser–target environment, the Faraday cup can be adopted to detect high-energy charged particles as a real-time detector based on the time-of-flight (TOF) technique. The TOF spectrum results from a time-resolved voltage amplitude measurement, induced by charged particles impinging the Faraday cup.
Faraday cup arrays are designed to cover different observation angles, with the normal direction to the target as reference, as shown in Figure
As mentioned, the detector is used as an ion collector in an array covering the entire emission cone and is capable of detecting high currents when it is placed in a range of few tens of centimeters from the interaction point. In common with other diagnostics, the main disadvantage is that, because of the detector position close to the interaction point, large EMPs exist and can disturb the measurements if not accurately identified and de-embedded.
2.4.3 Radiochromic film
Measurements of ion species parameters, such as divergence, emittance, spatial and energy resolved distribution, are of primary interest. During the interaction between powerful laser systems and targets, significant EMPs can be generated. Because of these, sensitive electronics close to the interaction point is not reliable; in contrast, film detection has been demonstrated not to be sensitive to EMPs, but electrons and X-rays can cause a signal background (easily identifiable).
The simplest setup[
2.4.4 Imaging plates
Other diagnostic techniques widely adopted to determine the beam energy and profile are image plates (IPs) and scintillators, respectively. The IP is made of phosphors with phosphorescent properties which can release the stored energy in a de-excitation process. When photons or charged particles are incident on the IP, the electrons are promoted to a meta-stable state. Therefore, the energy stored can be retrieved by stimulating the excited meta-stable state by photons, and then the released energy (as light) is called photo-stimulated luminescence (PSL)[
2.4.5 Thompson parabola
Another diagnostic, based on collection of the escaping particles, employing both magnetic and electric fields to induce a deflection on their propagation, is called the Thompson parabola[
2.4.6 Time-of-flight detector
TOF measurements are also widely employed in laser–solid matter experiments[
Diamond semiconductors can be used as detectors sensitive to photons and to particles with energies above their band gap threshold, which makes them also insensitive to the visible background, which is quite noticeable in laser–plasma experiments. Nevertheless, specific designs have to be produced to eliminate EMPs coupling with the signal, as in Ref. [
2.4.7
Electrons are initially accelerated during the laser–plasma interaction; subsequently, they emit hard X-rays via the Bremsstrahlung process as they are stopped in solid material. Moreover, this phenomenon regulates the electron–positron pair production
2.5 Other techniques
Finally, it is worth mentioning an innovative technique concerning the temporal measurement of proton bursts produced from laser–solid target interactions[
3 EOS diagnostic for fast electron and electromagnetic pulse detection at SPARC_LAB
In laser–plasma interaction experiments, time-integrated diagnostics are usually employed, as shown in the previous section. On the other hand, single-shot, time-resolved techniques are needed to properly investigate evolution of the phenomena. At the SPARC_LAB test facility[
Thus far, only indirect evidence of the escaping electrons has been detected. In particular, by measuring the X-ray emission by
Some experimental campaigns[
Moreover, our EOS diagnostic is also suitable to work as a TOF monitor[
To summarize, our EOS-based diagnostic allows relativistic fast electron charge and mean energy time-resolved measurements, as well as providing the temporal length of the electron bunch. To be more precise, our diagnostic can detect any external electric field whose strength is high enough to induce a birefringence in the EO crystal.
In the following, we will treat two examples of experiments performed at SPARC_LAB: one devoted to fast electron characterization, the other for EMP detection.
3.1 Experimental detection of fast electrons
By means of the setup depicted in Figure
For the planar foil target, as in Figure
The signal coming from the wedged target, as in Figure
3.2 EMP detection
The interaction between an ultra-intense laser and a solid target also produces a huge number of EMPs. Besides the possibility to detect fast electrons, our EOS diagnostic has allowed us to reveal such EMPs. Figure
Figure
4 Conclusions
In conclusion, this paper provides a review regarding the different diagnostics employed in laser–solid target interaction experiments related to electron, proton and ion acceleration. Finally, we present our experimental study regarding the development of single-shot temporal diagnostics based on EOS employed for fast electron and EMP detection at the femtosecond scale. In contrast to the reviewed diagnostics, which are mostly time-integrated, our diagnostic provides single-shot, time-resolved measurements of relativistic fast electrons in terms of charge, mean energy and temporal length. In particular, nanocoulomb charged beams have been detected with multi-MeV mean energy and temporal duration
[1] D. Strickland, G. Mourou. Opt. Commun., 56, 219(1985).
[2] B. A. Remington, D. Arnett, R. P. Drake, H. Takabe. Science, 284, 1488(1999).
[3] M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, H. Powell. Phys. Rev. Lett., 86, 436(2001).
[4] T. Bartal, M. E. Foord, C. Bellei, M. H. Key, K. A. Flippo, S. A. Gaillard, D. T. Offermann, P. K. Patel, L. C. Jarrott, D. P. Higginson, M. Roth, A. Otten, D. Kraus, R. B. Stephens, H. S. McLean, E. M. Giraldez, M. S. Wei, D. C. Gautier, F. N. Beg. Nat. Phys., 8, 139(2012).
[5] K. W. D. Ledingham, W. Galster. New J. Phys., 12(2010).
[6] E. L. Clark, K. Krushelnick, M. Zepf, F. N. Beg, M. Tatarakis, A. Machacek, M. I. K. Santala, I. Watts, P. A. Norreys, A. E. Dangor. Phys. Rev. Lett., 85, 1654(2000).
[7] R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, E. M. Campbell. Phys. Rev. Lett., 85, 2945(2000).
[8] A. J. Mackinnon, Y. Sentoku, P. K. Patel, D. W. Price, S. Hatchett, M. H. Key, C. Andersen, R. Snavely, R. R. Freeman. Phys. Rev. Lett., 88(2002).
[9] A. G. Krygier, D. W. Schumacher, R. R. Freeman. Phys. Plasmas, 21(2014).
[10] A. Macchi, M. Borghesi, M. Passoni. Rev. Mod. Phys., 85, 751(2013).
[11] J. Badziak, S. Głowacz, S. Jabłoński, P. Parys, J. Wołowski, H. Hora, J. Krása, L. Láska, K. Rohlena. Plasma Phys. Control. Fusion, 46(2004).
[12] J.-L. Dubois, F. Lubrano-Lavaderci, D. Raffestin, J. Ribolzi, J. Gazave, A. Compant La Fontaine, E. d’Humières, S. Hulin, Ph. Nicolaï, A. Poyé, V. T. Tikhonchuk. Phys. Rev. E, 89(2014).
[13] H. Hamster, A. Sullivan, S. Gordon, W. White, R. W. Falcone. Phys. Rev. Lett., 71, 2725(1993).
[14] M. J. Mead, D. Neely, J. Gauoin, R. Heathcote, P. Patel. Rev. Sci. Instrum., 75, 4225(2004).
[15] A. Poyé, J.-L. Dubois, F. Lubrano-Lavaderci, E. d’Humières, M. Bardon, S. Hulin, M. Bailly-Grandvaux, J. Ribolzi, D. Raffestin, J. J. Santos, Ph. Nicolaï, V. Tikhonchuk. Phys. Rev. E, 92(2015).
[16] A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H.-G. Meyer, G. G. Paulus. Phys. Rev. Lett., 111(2013).
[17] Z. Jin, H. B. Zhuo, T. Nakazawa, J. H. Shin, S. Wakamatsu, N. Yugami, T. Hosokai, D. B. Zou, M. Y. Yu, Z. M. Sheng, R. Kodama. Phys. Rev. E, 94(2016).
[18] S. Kar, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann, B. Aurand, G. Cantono, P. Hadjisolomou, C. L. S. Lewis, A. Macchi, G. Nersisyan, A. P. L. Robinson, A. M. Schroer, M. Swantusch, M. Zepf, O. Willi, M. Borghesi. Nat. Commun., 7(2016).
[19] K. Quinn, P. A. Wilson, C. A. Cecchetti, B. Ramakrishna, L. Romagnani, G. Sarri, L. Lancia, J. Fuchs, A. Pipahl, T. Toncian, O. Willi, R. J. Clarke, D. Neely, M. Notley, P. Gallegos, D. C. Carroll, M. N. Quinn, X. H. Yuan, P. McKenna, T. V. Liseykina, A. Macchi, M. Borghesi. Phys. Rev. Lett., 102(2009).
[20] S. Tokita, S. Sakabe, T. Nagashima, M. Hashida, S. Inoue. Sci. Rep., 5, 8268(2015).
[21] C. G. Brown, A. Throop, D. Eder, J. Kimbrough. J. Phys.: Conf. Ser., 112(2008).
[22] A. Poyé, S. Hulin, M. Bailly-Grandvaux, J.-L. Dubois, J. Ribolzi, D. Raffestin, M. Bardon, F. Lubrano-Lavaderci, E. d’Humières, J. J. Santos, Ph. Nicolaï, V. Tikhonchuk. Phys. Rev. E, 91(2015).
[23] F. Consoli, R. De Angelis, L. Duvillaret, P. L. Andreoli, M. Cipriani, G. Cristofari, G. Di Giorgio, F. Ingenito, C. Verona. Sci. Rep., 6(2016).
[24] O. Jäckel, J. Polz, S. M. Pfotenhauer, H. P. Schlenvoigt, H. Schwoerer, M. C. Kaluza. New J. Phys., 12(2010).
[25] A. S. Sandhu, A. K. Dharmadhikari, P. P. Rajeev, G. R. Kumar, S. Sengupta, A. Das, P. K. Kaw. Phys. Rev. Lett., 89(2002).
[26] G. Chatterjee, P. K. Singh, A. Adak, A. D. Lad, G. R. Kumar. Rev. Sci. Instrum., 85(2014).
[27] H. B. Zhuo, S. J. Zhang, X. H. Li, H. Y. Zhou, X. Z. Li, D. B. Zou, M. Y. Yu, H. C. Wu, Z. M. Sheng, C. T. Zhou. Phys. Rev. E, 95(2017).
[28] R. Pompili, M. P. Anania, F. Bisesto, M. Botton, M. Castellano, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, Z. Henis, M. Petrarca, E. Schleifer, A. Zigler. Sci. Rep., 6(2016).
[29] R. Pompili, M. P. Anania, F. Bisesto, M. Botton, M. Castellano, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, Z. Henis, M. Petrarca, E. Schleifer, A. Zigler. Opt. Express, 24, 29512(2016).
[30] F. Bisesto, M. P. Anania, M. Botton, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, R. Pompili, E. Schleifer, A. Zigler. Quantum Beam Sci., 1, 13(2017).
[31] R. Pompili, M. P. Anania, F. Bisesto, M. Botton, E. Chiadroni, A. Cianchi, A. Curcio, M. Ferrario, M. Galletti, Z. Henis, M. Petrarca, E. Schleifer, A. Zigler. Sci. Rep., 8, 3243(2018).
[32] I. Wilke, A. M. MacLeod, W. A. Gillespie, G. Berden, G. M. H. Knippels, A. F. G. Van Der Meer. Phys. Rev. Lett., 88(2002).
[33] K. Y. Kim, B. Yellampalle, A. J. Taylor, G. Rodriguez, J. H. Glownia. Opt. Lett., 32, 1968(2007).
[34] M. De Marco, J. Krása, J. Cikhardt, M. Pfeifer, E. Krouskỳ, D. Margarone, H. Ahmed, M. Borghesi, S. Kar, L. Giuffrida, R. Vrana, A. Velyhan, J. Limpouch, G. Korn, S. Weber, L. Velardi, D. Delle Side, V. Nassisi, J. Ullschmied. J. Instrum., 11(2016).
[35] M. De Marco, M. Pfeifer, E. Krousky, J. Krasa, J. Cikhardt, D. Klir, V. Nassisi. J. Phys.: Conf. Ser., 508(2014).
[36] P. H. Duncan. IEEE Trans. Electromagn. Compat., EMC‐16, 83(1974).
[37] G. Malka, J. L. Miquel. Phys. Rev. Lett., 77, 75(1996).
[38] A. J. Mackinnon, M. Borghesi, S. Hatchett, M. H. Key, P. K. Patel, H. Campbell, A. Schiavi, R. Snavely, S. C. Wilks, O. Willi. Phys. Rev. Lett., 86, 1769(2001).
[39] P. McKenna, K. W. D. Ledingham, L. Robson. Lasers and Nuclei, 91(2006).
[40] R. J. Clarke, P. T. Simpson, S. Kar, J. S. Green, C. Bellei, D. C. Carroll, B. Dromey, S. Kneip, K. Markey, P. McKenna, W. Murphy, S. Nagel, L. Willingale, M. Zepf. Nucl. Instrum. Methods Phys. Res. A, 585, 117(2008).
[41] P. R. Bolton, M. Borghesi, C. Brenner, D. C. Carroll, C. De Martinis, F. Fiorini, A. Flacco, V. Floquet, J. Fuchs, P. Gallegos, D. Giove, J. S. Green, S. Green, B. Jones, D. Kirby, P. McKenna, D. Neely, F. Nuesslin, R. Prasad, S. Reinhardt, M. Roth, U. Schramm, G. G. Scott, S. Ter-Avetisyan, M. Tolley, G. Turchetti, J. J. Wilkens. Phys. Medica, 30, 255(2014).
[42] H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, T. Esirkepov. Nature, 439, 445(2006).
[43] K. Harres, M. Schollmeier, E. Brambrink, P. Audebert, A. Blažević, K. Flippo, D. C. Gautier, M. Geißel, B. M. Hegelich, F. Nürnberg, J. Schreiber, H. Wahl, M. Roth. Rev. Sci. Instrum., 79(2008).
[44] D. Jung, R. Hörlein, D. Kiefer, S. Letzring, D. C. Gautier, U. Schramm, C. Hübsch, R. Öhm, B. J. Albright, J. C. Fernandez, D. Habs, B. M. Hegelich. Rev. Sci. Instrum., 82(2011).
[45] L. Torrisi, M. Cutroneo, L. Andò, J. Ullschmied. Phys. Plasmas, 20(2013).
[46] F. Consoli, R. De Angelis, P. Andreoli, G. Cristofari, G. Di Giorgio, A. Bonasera, M. Barbui, M. Mazzocco, W. Bang, G. Dyer, H. Quevedo, K. Hagel, K. Schmidt, E. Gaul, T. Borger, A. Bernstein, M. Martinez, M. Donovan, M. Barbarino, S. Kimura, J. Sura, J. Natowitz, T. Ditmire. Nucl. Instrum. Methods Phys. Res. A, 720, 149(2013).
[47] A. Alejo, D. Gwynne, D. Doria, H. Ahmed, D. C. Carroll, R. J. Clarke, D. Neely, G. G. Scott, M. Borghesi, S. Kar. J. Instrum., 11(2016).
[48] D. Margarone, J. Krása, L. Giuffrida, A. Picciotto, L. Torrisi, T. Nowak, P. Musumeci, A. Velyhan, J. Prokpek, L. Láska, T. Mocek, J. Ullschmied, B. Rus. J. Appl. Phys., 109(2011).
[49] R. De Angelis, F. Consoli, C. Verona, G. Di Giorgio, P. Andreoli, G. Cristofari, M. Cipriani, F. Ingenito, M. Marinelli, G. Verona-Rinati. J. Instrum., 11(2016).
[50] S. Busold, D. Schumacher, O. Deppert, C. Brabetz, S. Frydrych, F. Kroll, M. Joost, H. Al-Omari, A. Blažević, B. Zielbauer, I. Hofmann, V. Bagnoud, T. E. Cowan, M. Roth. Phys. Rev. ST Accel., 16(2013).
[51] L. Gizzi, D. Giove, C. Altana, F. Brandi, P. Cirrone, G. Cristoforetti, A. Fazzi, P. Ferrara, L. Fulgentini, P. Koester, L. Labate, G. Lanzalone, P. Londrillo, D. Mascali, A. Muoio, D. Palla, F. Schillaci, S. Sinigardi, S. Tudisco, G. Turchetti. Appl. Sci., 7, 984(2017).
[52] F. Bisesto, M. Galletti, M. P. Anania, F. Massimo, R. Pompili, M. Botton, A. Zigler, F. Consoli, M. Salvadori, P. Andreoli, C. Verona. High Power Laser Sci. Eng., 7(2019).
[53] M. D. Perry, J. A. Sefcik, T. Cowan, S. Hatchett, A. Hunt, M. Moran, D. Pennington, R. Snavely, S. C. Wilks. Rev. Sci. Instrum., 70, 265(1999).
[54] B. Dromey, M. Coughlan, L. Senje, M. Taylor, S. Kuschel, B. Villagomez-Bernabe, R. Stefanuik, G. Nersisyan, L. Stella, J. Kohanoff, M. Borghesi, F. Currell, D. Riley, D. Jung, C.-G. Wahlström, C. L. S. Lewis, M. Zepf. Nat. Commun., 7(2016).
[55] D. Polli, D. Brida, S. Mukamel, G. Lanzani, G. Cerullo. Phys. Rev. A, 82(2010).
[56] M. Ferrario, D. Alesini, M. Anania, A. Bacci, M. Bellaveglia, O. Bogdanov, R. Boni, M. Castellano, E. Chiadroni, A. Cianchi, S. B. Dabagov, C. De Martinis, D. Di Giovenale, G. Di Pirro, U. Dosselli, A. Drago, A. Esposito, R. Faccini, A. Gallo, M. Gambaccini, C. Gatti, G. Gatti, A. Ghigo, D. Giulietti, A. Ligidov, P. Londrillo, S. Lupi, A. Mostacci, E. Pace, L. Palumbo, V. Petrillo, R. Pompili, A. R. Rossi, L. Serafini, B. Spataro, P. Tomassini, G. Turchetti, C. Vaccarezza, F. Villa, G. Dattoli, E. Di Palma, L. Giannessi, A. Petralia, C. Ronsivalle, I. Spassovsky, V. Surrenti, L. Gizzi, L. Labate, T. Levato, J. V. Rau. Nucl. Instrum. Methods Phys. Res. B, 309, 183(2013).
[57] F. G. Bisesto, M. P. Anania, M. Bellaveglia, E. Chiadroni, A. Cianchi, G. Costa, A. Curcio, D. Di Giovenale, G. Di Pirro, M. Ferrario, F. Filippi, A. Gallo, A. Marocchino, R. Pompili, A. Zigler, C. Vaccarezza. Nucl. Instrum. Methods Phys. Res. A, 909, 452(2018).
[58] M. H. Key, M. D. Cable, T. E. Cowan, K. G. Estabrook, B. A. Hammel, S. P. Hatchett, E. A. Henry, D. E. Hinkel, J. D. Kilkenny, J. A. Koch, W. L. Kruer, A. B. Langdon, B. F. Lasinski, R. W. Lee, B. J. MacGowan, A. MacKinnon, J. D. Moody, M. J. Moran, A. A. Offenberger, D. M. Pennington, M. D. Perry, T. J. Phillips, T. C. Sangster, M. S. Singh, M. A. Stoyer, M. Tabak, G. L. Tietbohl, M. Tsukamoto, K. Wharton, S. C. Wilks. Phys. Plasmas, 5, 1966(1998).
[59] P. M. Nilson, J. R. Davies, W. Theobald, P. A. Jaanimagi, C. Mileham, R. K. Jungquist, C. Stoeckl, I. A. Begishev, A. A. Solodov, J. F. Myatt, J. D. Zuegel, T. C. Sangster, R. Betti, D. D. Meyerhofer. Phys. Rev. Lett., 108(2012).
[60] Y. Ping, R. Shepherd, B. F. Lasinski, M. Tabak, H. Chen, H. K. Chung, K. B. Fournier, S. B. Hansen, A. Kemp, D. A. Liedahl, K. Widmann, S. C. Wilks, W. Rozmus, M. Sherlock. Phys. Rev. Lett., 100(2008).
[61] M. I. K. Santala, M. Zepf, I. Watts, F. N. Beg, E. Clark, M. Tatarakis, K. Krushelnick, A. E. Dangor, T. McCanny, I. Spencer, R. P. Singhal, K. W. D. Ledingham, S. C. Wilks, A. C. Machacek, J. S. Wark, R. Allott, R. J. Clarke, P. A. Norreys. Phys. Rev. Lett., 84, 1459(2000).
[62] H. Chen, R. Shepherd, H. K. Chung, A. Kemp, S. B. Hansen, S. C. Wilks, Y. Ping, K. Widmann, K. B. Fournier, G. Dyer, A. Faenov, T. Pikuz, P. Beiersdorfer. Phys. Rev. E, 76(2007).
[63] A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao, D. P. Siddons, D. P. Lowney, A. G. MacPhee, D. Weinstein, R. W. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. N. Chapman, R. W. Lee, T. N. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. S. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Emma, P. Krejcik, J. Arthur, S. Brennan, K. J. Gaffney, A. M. Lindenberg, K. Luening, J. B. Hastings. Phys. Rev. Lett., 94(2005).
[64] R. Pompili, M. P. Anania, M. Bellaveglia, A. Biagioni, G. Castorina, E. Chiadroni, A. Cianchi, M. Croia, D. Di Giovenale, M. Ferrario, F. Filippi, A. Gallo, G. Gatti, F. Giorgianni, A. Giribono, W. Li, S. Lupi, A. Mostacci, M. Petrarca, L. Piersanti, G. Di Pirro, S. Romeo, J. Scifo, V. Shpakov, C. Vaccarezza, F. Villa. New J. Phys., 18(2016).
[65] J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, P. Audebert. Nat. Phys., 2, 48(2006).
[66] A. Zigler, S. Eisenman, M. Botton, E. Nahum, E. Schleifer, A. Baspaly, I. Pomerantz, F. Abicht, J. Branzel, G. Priebe, S. Steinke, A. Andreev, M. Schnuerer, W. Sandner, D. Gordon, P. Sprangle, K. W. D. Ledingham. Phys. Rev. Lett., 110(2013).
[67] A. Zigler, T. Palchan, N. Bruner, E. Schleifer, S. Eisenmann, M. Botton, Z. Henis, S. A. Pikuz, A. Y. Faenov, D. Gordon, P. Sprangle. Phys. Rev. Lett., 106(2011).
[68] D. Margarone, O. Klimo, I. J. Kim, J. Prokupek, J. Limpouch, T. M. Jeong, T. Mocek, J. Psikal, H. T. Kim, J. Proska, K. H. Nam, L. Stolcova, I. W. Choi, S. K. Lee, J. H. Sung, T. J. Yu, G. Korn. Phys. Rev. Lett., 109(2012).
[69] L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert, F. Ceccherini, T. Cowan, T. Grismayer, S. Kar, A. Macchi, P. Mora, G. Pretzler, A. Schiavi, T. Toncian, O. Willi. Phys. Rev. Lett., 95(2005).
[70] S. Casalbuoni, H. Schlarb, B. Schmidt, P. Schmüser, B. Steffen, A. Winter. Phys. Rev. ST Accel., 11(2008).
Get Citation
Copy Citation Text
Fabrizio Bisesto, Mario Galletti, Maria Pia Anania, Massimo Ferrario, Riccardo Pompili, Mordechai Botton, Elad Schleifer, Arie Zigler. Review on TNSA diagnostics and recent developments at SPARC_LAB[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e56
Category: Research Articles
Received: Apr. 11, 2019
Accepted: Jul. 31, 2019
Posted: Jul. 31, 2019
Published Online: Sep. 23, 2019
The Author Email: Fabrizio Bisesto (fabrizio.giuseppe.bisesto@lnf.infn.it)