In 1915, Albert Einstein proposed the general theory of relativity and then predicted the existence of gravitational waves in 1916[
Chinese Optics Letters, Volume. 20, Issue 10, 100601(2022)
Portable system integrated with time comparison, ranging, and communication
We demonstrate a portable system integrated with time comparison, absolute distance ranging, and optical communication (TRC) to meet the requirements of space gravitational wave detection. A 1 km free-space asynchronous two-way optical link is performed. The TRC realizes optical communication with
1. Introduction
In 1915, Albert Einstein proposed the general theory of relativity and then predicted the existence of gravitational waves in 1916[
In order to meet the application requirements of the space gravitational wave detection mission, a portable integration system of time comparison, optical ranging, and communication (TRC) is invented based on single-photon detection. An asynchronous two-way optical link is constructed, and the signal loss can be reduced from proportional to
2. Methods
2.1. Asynchronous two-way optical link
The TRC integration system is an asynchronous two-way link, and the schematic is shown in Fig. 1. There are two identical systems located at site A and site B. The laser diode (LD) in system A (
Sign up for Chinese Optics Letters TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
2.2. Analysis of coding/decoding
The TRC system uses pseudo-random (PN) code to the spread spectrum, and the PN code adopts the
Figure 1.Schematic of asynchronous two-way optical link. SPD, single-photon detector; LD, laser diode; SF, start of frame; EF, end of frame; FPGA, field programmable gate array.
The schematic of the
|
Figure 2.(a) Schematic of m-sequence generator. (b) Flow chart of data decoding process.
In the decoding process, an SPD is used to improve the sensitivity of the system, which conforms to the Poisson distribution. For one SPD with detection efficiency
3. Experimental Setup and Results
To verify the possibility of the TRC integration system, we constructed a free-space asynchronous two-way link over 1 km. As shown in Fig. 3(a), the link is actually a folded atmosphere link. Two identical setups are located at sites A and B on the same side, respectively. The 850 nm LD is triggered by signals modulated by the FPGA modulator (Xilinx, XC7A35TFGG484-2). The angle of the laser after passing through the variable optical attenuator (VOA) and collimator (COL) is adjusted by a mirror (M) and incident on a plane M with a diameter of 101.6 mm on the other side. The reflected light is detected by a self-developed Si avalanche photodiode SPD (Si SPAD) with an active area of 500 µm in diameter at another site after passing through a filter (F). The clocks of A and B are provided by the same crystal oscillator. The setup was located at the Lanxiang Lake in Shanghai for field experiment, and the photograph is shown in Fig. 3(b). The SPD was put in a dark room in order to reduce the influence of background noise. The distance from the plane M to the two sites is
Figure 3.(a) Schematic of asynchronous two-way optical link. (b) System takes place at the Lanxiang Lake, Shanghai. SPD, single-photon detector; LD, laser diode; FPGA, field programmable gate array; F, filter; M, mirror; VOA, variable optical attenuator; COL, collimator.
The TDC used in the TRC system was self-developed by our research group based on an FPGA board with a time resolution of about 91 ps. The precision of the TDC was tested to verify whether the TDC can meet the time measurement requirements of the system. The signal generator generated two signals. The first arrival signal was used as the start signal, and the second arrival signal was used as the stop signal. The TDC recorded the time interval between the two signals. The precision of the TDC is uncertain due to the influence of the internal noise, so the standard deviation of a large number of measured values at fixed time intervals under the same conditions is taken as the standard to measure the precision. The measurement results are shown in Fig. 4, and the precision of the TDC was 67.7 ps. In the TRC system, the laser pulse width was
Figure 4.TDC performance test.
In experiment, the TRC system was located at the Lanxiang Lake in Shanghai, with strong wind and high humidity at night. The dark count rate of the SPD was
Figure 5.(a) Time comparison results. (b) Statistical histogram of distance measurement.
4. Conclusion
In this paper, a portable system of TRC integration based on single-photon detection is demonstrated. The current demonstration distance is a 1.05 km asynchronous two-way link. A PN sequence with a period of 32 chips is used for the spread spectrum. The data rate of optical communication is
[1] A. Einstein. Approximate integration of the field equations of gravitation. Sitzungsber. K. Preuss. Akad. Wiss., 1, 688(1916).
[2] V. Connaughton, E. Burns, A. Goldstein, L. Blackburn, M. S. Briggs, B.-B. Zhang, J. Camp, N. Christensen, C. M. Hui, P. Jenke, T. Littenberg, J. E. McEnery, J. Racusin, P. Shawhan, L. Singer, J. Veitch, C. A. Wilson-Hodge, P. N. Bhat, E. Bissaldi, W. Cleveland, G. Fitzpatrick, M. M. Giles, M. H. Gibby, A. von Kienlin, R. M. Kippen, S. McBreen, B. Mailyan, C. A. Meegan, W. S. Paciesas, R. D. Preece, O. J. Roberts, L. Sparke, M. Stanbro, K. Toelge, P. Veres. Fermi GBM observations of LIGO gravitational wave event GW150914. Astrophys. J. Lett., 6, 826(2016).
[3] Z. Luo, S. Bai, X. Bian, G. Chen, P. Dong, Y. Dong, W. Gao, X. Gong, J. He, H. Li, X. Li, Y. Li, H. Liu, M. Shao, T. Song, B. Sun, W. Tang, P. Xu, S. Xu, R. Yang, G. Jin. Gravitational wave detection by space laser interferometry. Adv. Mech., 43, 415(2013).
[4] M. Pitkin, S. Reid, S. Rowan, J. Hough. Gravitational wave detection by interferometry (ground and space). Living Rev. Relativ., 14, 5(2011).
[5] J. R. Gair, M. Vallisneri, S. L. Larson, J. G. Baker. Testing general relativity with low-frequency, space-based gravitational-wave detectors. Living Rev. Relativ., 16, 7(2013).
[6] G. Wang, Z. Li, J. Huang, H. Duan, X. Huang, H. Liu, Q. Liu, S. Yang, L. Tu, H. Yeh. Analysis and suppression of thermal effect of an ultra-stable laser interferometer for space-based gravitational waves detection. Chin. Opt. Lett., 20, 011203(2022).
[7] D. Sweeney, G. Mueller. Experimental verification of clock noise transfer and components for space based gravitational wave detectors. Opt. Express, 20, 25603(2012).
[8] R. Gao, H. Liu, Y. Zhao, Z. Luo, J. Shen, G. Jin. Laser acquisition experimental demonstration for space gravitational wave detection missions. Opt. Express, 29, 6368(2021).
[9] K. Danzmann. LISA: laser interferometer space antenna for gravitational wave measurements. Class. Quant. Grav., 13, A247(1996).
[10] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta, C. P. L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, A. Klein. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D, 95, 103012(2017).
[11] M. Y. M. Lau, I. Mandel, A. Vigna-Gómez, C. J. Neijssel, S. Stevenson, A. Sesana. Detecting double neutron stars with LISA. Mon. Not. R. Astron. Soc., 492, 3061(2020).
[12] K. Danzmann, A. Rüdiger. LISA technology-concept, status, prospects. Class. Quant. Grav., 20, S1(2003).
[13] M. Armano, H. Audley, G. Auger, J. T. Baird, M. Bassan, P. Binetruy, M. Born, D. Bortoluzzi, N. Brandt, M. Caleno, L. Carbone, A. Cavalleri, A. Cesarini, G. Ciani, G. Congedo, A. M. Cruise, K. Danzmann, M. de Deus Silva, R. De Rosa, M. Diaz-Aguiló, L. Di Fiore, I. Diepholz, G. Dixon, R. Dolesi, N. Dunbar, L. Ferraioli, V. Ferroni, W. Fichter, E. D. Fitzsimons, R. Flatscher, M. Freschi, A. F. G. Marín, C. G. Marirrodriga, R. Gerndt, L. Gesa, F. Gibert, D. Giardini, R. Giusteri, F. Guzmán, A. Grado, C. Grimani, A. Grynagier, J. Grzymisch, I. Harrison, G. Heinzel, M. Hewitson, D. Hollington, D. Hoyland, M. Hueller, H. Inchauspé, O. Jennrich, P. Jetzer, U. Johann, B. Johlander, N. Karnesis, B. Kaune, N. Korsakova, C. J. Killow, J. A. Lobo, I. Lloro, L. Liu, J. P. López-Zaragoza, R. Maarschalkerweerd, D. Mance, V. Martín, L. Martin-Polo, J. Martino, F. Martin-Porqueras, S. Madden, I. Mateos, P. W. McNamara, J. Mendes, L. Mendes, A. Monsky, D. Nicolodi, M. Nofrarias, S. Paczkowski, M. Perreur-Lloyd, A. Petiteau, P. Pivato, E. Plagnol, P. Prat, U. Ragnit, B. Raïs, J. Ramos-Castro, J. Reiche, D. I. Robertson, H. Rozemeijer, F. Rivas, G. Russano, J. Sanjuán, P. Sarra, A. Schleicher, D. Shaul, J. Slutsky, C. F. Sopuerta, R. Stanga, F. Steier, T. Sumner, D. Texier, J. I. Thorpe, C. Trenkel, M. Tröbs, H. B. Tu, D. Vetrugno, S. Vitale, V. Wand, G. Wanner, H. Ward, C. Warren, P. J. Wass, D. Wealthy, W. J. Weber, L. Wissel, A. Wittchen, A. Zambotti, C. Zanoni, T. Ziegler, P. Zweifel. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys. Rev. Lett., 116, 231101(2016).
[14] W. Hu, Y. Wu. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev., 4, 685(2017).
[15] Z. Luo, Z. Guo, G. Jin. A brief analysis to Taiji: science and technology. Results Phys., 16, 102918(2020).
[16] Z. Luo, Y. Wang, Y. Wu. The Taiji program: a concise overview. Prog. Theor. Exp. Phys., 2021, 05A108(2021).
[17] (2009).
[18] S. E. Pollack, R. T. Stebbins. A demonstration of LISA laser communication. Class. Quant. Grav., 23, 4201(2006).
[19] J. J. Esteban, A. F. García, S. Barke, A. M. Peinado, F. G. Cervantes, I. Bykov, G. Heinzel, K. Danzmann. Experimental demonstration of weak-light laser ranging and data communication for LISA. Opt. Express, 19, 15937(2011).
[20] T. S. Schwarze, G. F. Barranco, D. Penkert, M. Kaufer, O. Gerberding, G. Heinzel. Picometer-stable hexagonal optical bench to verify LISA phase extraction linearity and precision. Phys. Rev. Lett., 122, 081104(2019).
[21] G. Heinzel, J. J. Esteban, S. Barke, M. Otto, Y. Wang, A. F. Garcia, K. Danzmann. uxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication. Class. Quant. Grav., 28, 094008(2011).
[22] G. de Vine, B. Ware, K. McKenzie, R. E. Spero, W. M. Klipstein, D. A. Shaddock. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys. Rev. Lett., 104, 211103(2010).
[23] J. J. Degnan. Asynchronous laser transponders for precise interplanetary ranging and time transfer. J. Geodyn., 34, 551(2002).
[24] W. Meng, Y. Wang, K. Tang, Z. Zhang, S. Jin, I. Procházka, Z. Zhang, G. Wu. High-precision single-photon laser time transfer with temperature drift post-compensation. Sensors, 20, 6655(2020).
[25] J. Blazej, I. Prochazka, J. Kodet, P. Linhart. Indoor demonstration of free-space picosecond two-way time transfer on single photon level. Proc. SPIE, 9224, 92241E(2014).
[26] D. Wu, L. Yang, X. Chen, Z. Li, G. Wu. Multi-channel pseudo-random coding single-photon ranging and imaging. Chin. Opt. Lett., 20, 021202(2022).
[27] D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goya, F. N. Wong, J. H. Shapiro. Photon-efficient imaging with a single-photon camera. Nat. Commun., 7, 12046(2016).
[28] G. Wen, J. Huang, L. Zhang, C. Li, T. Wen, J. Wang. A high-speed and high-sensitivity photon-counting communication system based on multichannel SPAD detection. IEEE Photon. J., 13, 7900310(2021).
[29] B. Du, Y. Wang, E. Wu, X. Chen, Guang Wu. Laser communication based on a multi-channel single-photon detector. Opt. Commun., 426, 89(2018).
[30] Z. Wang, W. Sha, Z. Chen, Y. Kang, Z. Luo, M. Li, Y. Li. Generation of vector beams in planar photonic crystal cavities with multiple missing-hole defects. Chin. Opt., 11, 131(2018).
Get Citation
Copy Citation Text
Qiongqiong Zhang, Chengkai Pang, Yurong Wang, Guangyue Shen, Lei Yang, Zhaohui Li, Haiyan Huang, Guang Wu, "Portable system integrated with time comparison, ranging, and communication," Chin. Opt. Lett. 20, 100601 (2022)
Category: Fiber Optics and Optical Communications
Received: Feb. 11, 2022
Accepted: May. 25, 2022
Published Online: Jun. 27, 2022
The Author Email: Guang Wu (gwu@phy.ecnu.edu.cn)