Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2210016(2021)

Wavelet Threshold Denoising Algorithm for Impulse Noise Removal

Bin Fang1 and Jiayi Chen2、*
Author Affiliations
  • 1School of Information Engineering, Guangzhou City Construction College, Guangzhou, Guangdong 510925, China
  • 2School of Biomedical Engineering, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
  • show less

    In order to address the deficiencies of existing algorithms for impulse noise removal, and to further improve denoising performance and robustness, a wavelet threshold denoising algorithm for impulse noise removal is proposed in this paper. First, based on the gray-scale characteristic of impulse noise, the randomness and approximate uniformity of its distribution, the noisy pixels are identified by using statistical method. Then, a wavelet denoising method based on an adaptive threshold of the signal-to-noise intensity and a differentiable shrinkage function is used to restore the noisy pixels. The experimental results show that, compared with the existing algorithms, the image visual perception effect, peak signal-to-noise ratio and edge preservation index obtained by the proposed algorithm are greatly improved, and it has better robustness.

    Tools

    Get Citation

    Copy Citation Text

    Bin Fang, Jiayi Chen. Wavelet Threshold Denoising Algorithm for Impulse Noise Removal[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2210016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 11, 2021

    Accepted: Feb. 17, 2021

    Published Online: Nov. 5, 2021

    The Author Email: Chen Jiayi (beyond38@163.com)

    DOI:10.3788/LOP202158.2210016

    Topics