With the rapid development of laser technologies, a laser pulse with intensity far exceeding
High Power Laser Science and Engineering, Volume. 13, Issue 1, 010000e1(2025)
Manipulating energy mergence of ultraintense femtosecond laser beamlets in underdense plasmas
The propagation of multiple ultraintense femtosecond lasers in underdense plasmas is investigated theoretically and numerically. We find that the energy merging effect between two in-phase seed lasers can be improved by using two obliquely incident guiding lasers whose initial phase is
1 Introduction
With the rapid development of laser technologies, a laser pulse with intensity far exceeding
In the relativistic regime, relativistic electron mass correction and plasma density redistribution induced by the ponderomotive force of the laser are responsible for nonlinear effects such as relativistic self-focusing and self-modulating instability[11,12]. Both of these phenomena lead to longitudinal and transverse redistribution of laser energy, which in turn has a significant impact on charged particle acceleration, ultra-bright radiation and light amplification. When two laser beamlets copropagate in underdense plasma, more exotic effects may occur. The mutual interaction feature is characterized by attraction, repulsion and spiral due to the difference of electron dynamic behavior in different laser–plasma parameters[11–21]. In particular, even a small initial phase difference can result in a strong energy transfer between beams, which will greatly affect the formation of coupled light[13–16]. This offers possibilities of merging multiple laser beams into a single, more powerful laser pulse.
In this paper, we propose to manipulate the energy mergence of two femtosecond (fs) seed lasers in underdense plasma by using two obliquely incident external guiding lights. It is found that the peak intensity of the merged laser is more than five times higher than that of the seed laser when the guiding laser is
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
In Section 2, we firstly review the propagation properties of two laser beams in plasma by the nonlinear Schrödinger equations (NSEs). Then we investigate the beam propagation dynamics by two-dimensional (2D) particle-in-cell (PIC) simulations, and reveal the reasons for attraction, repulsion and energy transfer between the two laser beams at different phase differences. In Section 3, two methods are proposed to manipulate the energy mergence process of fs seed lasers by using obliquely incident guiding lasers with different phase differences. Section 4 shows the influence of the laser–plasma parameters on the peak intensity of the merged light and the experimental consideration. Finally, a summary is given in Section 5.
2 Propagation of two parallel femtosecond laser beams in underdense plasmas
When a relativistically intense linearly polarized (LP) or circularly polarized (CP) laser pulse travels through underdense plasma along the
when the density modulation and relativistic electron mass correction are neglected, where
To illustrate the dynamics of two fs laser beams interacting with underdense plasmas, we perform 2D-PIC simulations by utilizing the code EPOCH[35]. The size of simulation box is
Figure 1 shows the distribution of the normalized light intensity
Figure 1.Snapshot of spatial distribution of the normalized light intensity of two parallel incident seed lasers with different initial phase difference of (a)–(c)
, (d)–(f)
and (g)–(i)
at different times. The arrows in the left-column panels represent the Poynting vector of the lasers.
We can understand the interaction mechanism of two laser beams in underdense plasmas through the electron dynamics. The light propagation in a medium is closely related to its refractive index
Figure 2.Snapshots of spatial distribution of the electron density (a)–(c) and the current density
(d)–(f) at different times for two parallel incident seed lasers of (a), (d)
, (b), (e)
and (c), (f)
, respectively. Here, the current density is normalized by
and
.
3 Manipulation energy mergence by obliquely incident external guiding lasers
As discussed above, the actual phase difference between two lasers determines their propagation properties in underdense plasma. In fact, in addition to changing
Here, we propose two possible methods to manipulate the energy mergence between two parallel fs seed lasers of
Figure 3.Snapshot of spatial distribution of the normalized light intensity at different times using two external guiding lasers of initial phases advancing
compared to seed lasers (i.e.,
) with the incidence angle of
((a)–(c), case 2) and
((d)–(f), case 3), respectively. The initial phase difference of the seed lasers is
.
Another method is to employ two guiding lasers of
Figure 4.Snapshot of spatial distribution of the normalized light intensity at different times using two external guiding lasers of initial phases advancing
compared to seed lasers (i.e.,
) with the incidence angle of
((a)–(c), case 4) and
((d)–(f), case 5), respectively. The initial phase difference of the seed lasers is
.
When a relativistic fs laser pulse propagates through underdense plasma, the electron density will be significantly modulated, and nonlinear structures such as the electron cavity and channel may appear, which in turn will affect the subsequent propagation behavior of the laser. Figure 5 shows the electron density distribution at different times in the five cases. We see that a multi-cavity structure is induced in cases 1, 2 and 4, but without a large number of electrons injected into the tail of the cavities, which is different from the bubbles in the highly nonlinear broken-wave regime[37]. In case 3, with the use of two obliquely incident guiding lasers of
Figure 5.Snapshot of the normalized electron density for
from case 1 to case 4, and for
and
in case 5.
Figures 6(a) and 6(b) show the axial profile of the merged light intensity along the
Figure 6.(a) The axial profile of laser intensity along the direction and (b) the transverse profile at the
position corresponding to the peak intensity when the merged light is strongest in the five cases. For comparison, the black lines in (a) and (b) give the axial and transverse profiles of the seed laser. (c) The highest energy conversion efficiency from all incident lasers to the merged light, and (d) the temporal evolution of the energy conversion efficiency from all incident lasers to the electrons in the five cases.
Note that the mergence process above is investigated at the same intensity, so that the total laser energy used in cases 3 and 5 is twice that in case 1. In principle, a comparison at the same total laser energy is more instructive, but a comparison at the same intensity is also meaningful for manipulating relativistic fs lasers to achieve higher light intensities. In fact, a similar scenario occurs in direct-driven inertial confinement fusion, where multiple picosecond laser beams of the same intensity are incident to the center of a deuterium tritium pellet, and cross-beam energy transfer may occur in the laser–plasma interaction[38,39]. Our paper focuses more on the situation of multiple fs lasers propagating in plasma. For cases 3 and 5, we also simulated the same laser energy as case 1, where the intensity of the seed and guiding lasers is reduced to half (i.e.,
4 Influence of the laser–plasma parameters on the intensity of the merged light
We next consider the influence of the amplification effect of laser intensity on the laser–plasma parameters. Since cases 3 and 5 are more advantageous in terms of energy mergence, we only show the simulation results of different parameters in these two cases. Figure 7 shows the dependence of the peak intensity of the merged laser
Figure 7.Dependence of the peak intensity of the merged light on (a) the intensity of the incident seed laser
, (b) the transverse separation distance
of the two seed lasers, (c) the incidence angle of the guiding laser
and (d) the normalized electron density of plasma
.
In experiments, the plasma density uniformity, initial phase difference of the lasers and their focal point positions are difficult to control accurately. Therefore, it is essential to discuss the influence of these factors on the mergence effect. We consider two different plasma density distributions: (1) a preplasma with a length of 5 μm and a density rising linearly from
5 Conclusion
In conclusion, we investigate the dynamics of multiple relativistic fs lasers propagating through underdense plasmas. The 2D-PIC simulation results show that the two seed lasers with different initial phase differences exhibit different behaviors, such as attraction, repulsion and energy transfer. Based on this, two possible methods to manipulate the energy mergence of seed lasers are proposed to utilize two external obliquely incident guiding lasers with their initial phases advancing
[1] G. A. Mourou, T. Tajima, S. V. Bulanov. Rev. Mod. Phys., 78, 309(2006).
[2] C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. A. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, J. D. Zuegel. High Power Laser Sci. Eng., 7, e54(2019).
[3] M. Chiaramello, F. Amiranoff, C. Riconda, S. Weber. Phys. Rev. Lett., 117, 235003(2016).
[4] S. Weber, C. Riconda, L. Lancia, J.-R. Marquès, G. A. Mourou, J. Fuchs. Phys. Rev. Lett., 111, 055004(2013).
[5] S. Andréas, G. Mickael, P. István, R. Caterina. Phys. Rev. E, 106, 045208(2022).
[6] M. Lamač, K. Mima, J. Nejdl, U. Chaulagain, S. V. Bulanov. Phys. Rev. Lett., 131, 205001(2023).
[7] L. F. Wang, F. Y. Wang. Appl. Phys. Lett., 105, 183502(2014).
[8] M. R. Edwards, S. Waczynski, E. Rockafellow, L. Manzo, A. Zingale, P. Michel, H. M. Milchberg. Optica, 10, 1587(2023).
[9] Z. L. Li, Y. L. Zou, X. M. Zeng, Z. H. Wu, X. D. Wang, X. Wang, J. Mu, B. Hu. Matter Radiat. Extremes, 8, 014401(2023).
[10] B. Hans, F. Pau, M. David. Phys. Rev. Lett., 124, 191601(2020).
[11] C. Ren, R. G. Hemker, R. A. Fonseca, B. J. Duda, W. B. Mori. Phys. Rev. Lett., 85, 2124(2000).
[12] H. C. Wu, Z. M. Sheng, J. Zhang. Phys. Rev. E, 70, 026407(2004).
[13] G. Z. Sun, O. Edward, Y. C. Lee, G. Parvez. Phys. Fluids, 30, 526(1987).
[14] S. L. Yang, C. T. Zhou, T. W. Huang, L.B. Ju, X. T. He. Phys. Rev. A, 95, 053813(2017).
[15] Z. M. Sheng, K. Nishihara, T. Honda, Y. Sentoku, K. Mima, S. V. Bulanov. Phys. Rev. E, 64, 066409(2001).
[16] Q. L. Dong, Z. M. Sheng, J. Zhang. Phys. Rev. E, 66, 027402(2002).
[17] G. I. Stegeman, M. Segev. Science, 286, 1518(1999).
[18] H. Meng, G. Salamo, M. F. Shih, M. Segev. Opt. Lett., 22, 448(1997).
[19] T. T. Xi, X. Lu, J. Zhang. Phys. Rev. Lett., 96, 025003(2006).
[20] M. F. Shih, M. Segev, G. Salamo. Phys. Rev. Lett., 78, 2551(1997).
[21] M. Nakatsutsumi, J. R. Marquès, P. Antici, N. Bourgeois, J. L. Feugeas, T. Lin, L. Romagnani Ph. Nicolaï, R. Kodama, P. Audebert, J. Fuchs. Nat. Phys., 6, 1010(2010).
[22] J. Myatt, D. Pesme, S. Hüller, A Maximov, W. Rozmus, C. E. Capjack. Phys. Rev. Lett., 87, 255003(2001).
[23] D. Pesme, W. Rozmus, V. T. Tikhonchuk, A. Maximov, I. Ourdev, C. H. Still. Phys. Rev. Lett., 84, 278(2000).
[24] K. Hu, L. Q. Yi. Phys. Rev. Lett., 133, 045001(2024).
[25] W. P. Yao, M. Nakatsutsumi, S. Buffechoux, P. Antici, M. Borghesi, A. Ciardi, S. N. Chen, E. d’Humières, L. Gremillet, R. Heathcote, V. Horný, P. McKenna, M. N. Quinn, L. Romagnani, R. Royle, G. Sarri, Y. Sentoku, H. P. Schlenvoigt, T. Toncian, O. Tresca, L. Vassura, O. Willi, J. Fuchs. Matter Radiat. Extremes, 9, 047202(2024).
[26] E. Wallin, A. Gonoskov, M. Marklund. Phys. Plasmas, 24, 093101(2017).
[27] J. Ferri, E. Siminos, T. Fülöp. Commun. Phys., 2, 40(2019).
[28] L. Reichwein, A. Pukhov, M. Büscher. Phys. Rev. Accel. Beams, 25, 081001(2022).
[29] B. Liu, M. Y. Shi, M. Zepf, B. F. Lei, D. Seipt. Phys. Rev. Lett., 129, 274801(2022).
[30] B. Y. Li, F. Liu, M. Chen, F. Y. Wu, J. W. Wang, L. Lu, J. L. Li, X. L. Ge, X. H. Yuan, W. C. Yan, L. M. Chen, Z. M. Sheng, J. Zhang. Phys. Rev. Lett., 128, 244801(2022).
[31] Y. Shi, A. Arefiev, J. X. Hao, J. Zheng. Phys. Rev. Lett., 130, 155101(2023).
[32] Y. L. Ping, J. Y. Zhong, X. G. Wang, B. Han, W. Sun, Y. P. Zhang, D. W. Yuan, C. Q. Xing, J. Z. Wang, Z. D. Liu, Z. Zhang, B. Qiao, H. Zhang, Y. T. Li, J. Q. Zhu, G. Zhao, J. Zhang. Nat. Phys., 19, 263(2023).
[33] T. W. Huang, C. T. Zhou, A. P. L. Robinson, B. Qiao, H. Zhang, S. Z. Wu, H. B. Zhuo, P. A. Norreys, X. T. He. Phys. Rev. E, 92, 053106(2015).
[34] R. X. Bai, C. T. Zhou, T. W. Huang, L. B. Ju, S. Z. Wu, H. Zhang, M. Y. Yu, B. Qiao, S. C. Ruan, X. T. He. AIP Adv., 10, 025313(2020).
[35] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, C. P. Ridgers. Plasma Phys. Controlled Fusion, 57, 113001(2015).
[36] D. Bauer, P. Mulser, W. H. Steeb. Phys. Rev. Lett., 75, 4622(1995).
[37] A. Pukhov, J. Meyer-Ter-Vehn. Appl. Phys. B, 74, 355(2002).
[38] R. K. Kirkwood, B. B. Afeyan, W. L. Kruer, B. J. MacGowan, J. D. Moody, D. S. Montgomery, D. M. Pennington, T. L. Weiland, S. C. Wilks. Phys. Rev. Lett., 76, 2065(1996).
[39] J. D. Moody, P. Michel, L. Divol, R. L. Berger, E. Bond, D. K. Bradley, D. A. Callahan, E. L. Dewald, S. Dixit, M. J. Edwards, S. Glenn, A. Hamza, C. Haynam, D. E. Hinkel, N. Izumi, O. Jones, J. D. Kilkenny, R. K. Kirkwood, J. L. Kline, W. L. Kruer, G. A. Kyrala, O. L. Landen, S. LePape, J. D. Lindl, B. J. MacGowan, N. B. Meezan, A. Nikroo, M. D. Rosen, M. B. Schneider, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, K. Widmann, E. A. Williams, L. J. Atherton, S. H. Glenzer, E. I. Moses. Nat. Phys., 8, 344(2012).
Get Citation
Copy Citation Text
Huanwen Chen, Wenxing Yu, Xinrong Xu, Jinlong Jiao, Yuqing Wei, Xiangrui Jiang, Yan Yin, Tongpu Yu, Hongbin Zhuo, Debin Zou. Manipulating energy mergence of ultraintense femtosecond laser beamlets in underdense plasmas[J]. High Power Laser Science and Engineering, 2025, 13(1): 010000e1
Category: Research Articles
Received: Aug. 10, 2024
Accepted: Oct. 18, 2024
Posted: Oct. 18, 2024
Published Online: Feb. 26, 2025
The Author Email: Debin Zou (xuxinrong@126.com)