Photonic Sensors, Volume. 15, Issue 1, 250117(2025)
Fiber Optic Vacuum Ultraviolet Sensor Based on an AlN-Microwire Probe
Vacuum ultraviolet (VUV) light sensing shows great potential applications in the space science, materials, biophysics, and plasma physics. In this work, an all-optical detection method is proposed for VUV sensing by constructing an optical fiber-end Fabry-Pérot interferometer based on a single aluminum nitride (AlN) microwire. Compared with the traditional electrical devices, this all-optical detection method overcomes the difficulties like the fast response and electromagnetic interference immunity in detecting VUV bands at the present stage, and improves the response speed. The proposed device shows the excellent performance of VUV detection, with the static sensitivity of 1.03 nm/(W·cm−2), response rise time of down to 10 μs, and decay time of 0.64 ms. Beneficial from the excellent radiation resistance of AlN microwires and UV resistance of silica fibers, the proposed device is expected to have the good stability and potential applications in the fields of the solar physics and space exploration.
Get Citation
Copy Citation Text
WANG Ying, YE Jiahui, MA Dingbang, WANG Peiyao, LI Baikui, SUN Zhenhua, WU Honglei, LIAO Changrui, WANG Yiping. Fiber Optic Vacuum Ultraviolet Sensor Based on an AlN-Microwire Probe[J]. Photonic Sensors, 2025, 15(1): 250117
Received: Oct. 27, 2023
Accepted: May. 13, 2025
Published Online: May. 13, 2025
The Author Email: