Chinese Journal of Lasers, Volume. 37, Issue S1, 345(2010)

Simulation and Analysis of Laser-Controlled Thermal Stress Cutting of Alumina Ceramic

Cao Qianqian, Hu Jun*, and Luo Jingwen
Author Affiliations
  • [in Chinese]
  • show less

    Taking example for alumina ceramic, this paper briefly introduces the mechanism of CO2 laser-controlled thermal stress cutting of brittle materials. In order to study the distributions of temperature field and thermal stress field, a three-dimensional axial symmetric model of alumina ceramic is established by using APDL programming language of Ansys software. The normal stress σy of nodes which are in the laser scanning path, is in the process of "no stress-tensile stress-compressive stress-tensile stress-no stress" during cutting process, until the crack grows. The study reveals that laser power and the maximum temperature is directly proportional during the cutting process. While the laser power increases, the crack initiates earlier and the microcrack of the fracture surface becomes bigger with greater tensile stress. The results are proved by comparative experiments.

    Tools

    Get Citation

    Copy Citation Text

    Cao Qianqian, Hu Jun, Luo Jingwen. Simulation and Analysis of Laser-Controlled Thermal Stress Cutting of Alumina Ceramic[J]. Chinese Journal of Lasers, 2010, 37(S1): 345

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Mar. 16, 2010

    Accepted: --

    Published Online: Oct. 29, 2010

    The Author Email: Jun Hu (hujun@sjtu.edu.cn)

    DOI:10.3788/cjl201037s1.0345

    Topics