[1] A.A. Basharin, M. Kafesaki, E.N. Economou, C.M. Soukoulis, V.A. Fedotov, V. Savinov, N.I. Zheludev. Dielectric metamaterials with toroidal dipolar response. Phys. Rev. X, 5, 11(2015).
[2] G.R. Keiser, K. Fan, X. Zhang, R.D. Averitt. Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: A review. J. Infrared Millim. Terahertz Waves, 34, 709-723(2013).
[3] A. Andryieuski, A.V. Lavrinenko. Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach. Opt. Express, 21, 9144-9155(2013).
[4] A.A. High, R.C. Devlin, A. Dibos, M. Polking, D.S. Wild, J. Perczel, N.P. de Leon, M.D. Lukin, H. Park. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).
[5] Y. Jiang, Z.Y. Liu, N. Matsuhisa, D.P. Qi, W.R. Leow, H. Yang, J.C. Yu, G. Chen, Y.Q. Liu, C.J. Wan, Z.J. Liu, X.D. Chen. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater., 30, 8(2018).
[6] B.I. Wu, W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, J.A. Kong. A study of using metamaterials as antenna substrate to enhance gain. Prog. Electromagn. Res., 51, 295-328(2005).
[7] S. Chandra, D. Franklin, J. Cozart, A. Safaei, D. Chanda. Adaptive multispectral infrared camouflage. ACS Photonics, 5, 4513-4519(2018).
[8] J. Zou, J. Zhang, Y. He, Q. Hong, C. Quan, Z. Zhu. Multiband metamaterial selective absorber for infrared stealth. Appl. Opt., 59, 8768-8772(2020).
[9] Y. Guo, C.L. Cortes, S. Molesky, Z. Jacob. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett., 101, 5(2012).
[10] B.X. Wang, Y.H. He, P.C. Lou, H.X. Zhu. Multi-band terahertz superabsorbers based on perforated square-patch metamaterials. Nanoscale Adv., 3, 455-462(2021).
[11] B.J. Lee, L.P. Wang, Z.M. Zhang. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Opt. Express, 16, 11328-11336(2008).
[12] N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 4(2008).
[13] A. Motogaito, R. Tanaka, K. Hiramatsu. Fabrication of perfect plasmonic absorbers for blue and near-ultraviolet lights using double-layer wire-grid structures. J. Eur. Opt. Soc. Rapid Publ., 17, 6(2021).
[14] P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, P. Wu. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy, 158, 227-235(2020).
[15] S. Butun, K. Aydin. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Opt. Express, 22, 19457-19468(2014).
[16] R. Li Voti. Optimization of a perfect absorber multilayer structure by genetic algorithms. J. Eur. Opt. Soc. Rapid Publ., 14, 12(2018).
[17] H. Li, H. Peng, C. Ji, L. Lu, Z. Li, J. Wang, Z. Wu, Y. Jiang, J. Xu, Z. Liu. Electrically tunable mid-infrared antennas based on VO2. J. Mod. Opt., 65, 1809-1816(2018).
[18] J.R. Liang, P. Li, L.W. Zhou, J.B. Guo, Y.R. Zhao. Near-infrared tunable multiple broadband perfect absorber base on VO2 semi-shell arrays photonic microstructure and gold reflector. Mater. Res. Express, 5, 8(2018).
[19] A.D. Boardman, V.V. Grimalsky, Y.S. Kivshar, S.V. Koshevaya, M. Lapine, N.M. Litchinitser, V.N. Malnev, M. Noginov, Y.G. Rapoport, V.M. Shalaev. Active and tunable metamaterials. Laser Photonics Rev., 5, 287-307(2011).
[20] S.A. Pope, H. Laalej. A multi-layer active elastic metamaterial with tuneable and simultaneously negative mass and stiffness. Smart Mater. Struct., 23, 075020(2014).
[21] Y. Oka, T. Yao, N. Yamamoto. Structural phase transition of VO2(B) to VO2(A). J. Mater. Chem. (UK), 1, 815-818(1991).
[22] S. Wang, L. Kang, D.H. Werner. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Sci. Rep., 7, 4326(2017).
[23] B. Cao, Y. Li, X. Liu, H. Fei, M. Zhang, Y. Yang. Switchable broadband metamaterial absorber/reflector based on vanadium dioxide rings. Appl. Opt., 59, 8111-8117(2020).
[24] S.H. Ban, H.Y. Meng, X. Zhai, X.X. Xue, Q. Lin, H.J. Li, L.L. Wang. Tunable triple-band and broad-band convertible metamaterial absorber with bulk Dirac semimetal and vanadium dioxide. J. Phys. D Appl. Phys., 54, 6(2021).
[25] X.L. Song, Z.Z. Liu, J. Scheuer, Y.J. Xiang, K. Aydin. Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers. J. Phys. D Appl. Phys., 52, 7(2019).
[26] A. Sakurai, B. Zhao, Z.M. Zhang. Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model. J. Quant. Spectrosc. Radiat. Transf., 149, 33-40(2014).
[27] M.J. Dicken, K. Aydin, I.M. Pryce, L.A. Sweatlock, E.M. Boyd, S. Walavalkar, J. Ma, H.A. Atwater. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express, 17, 18330-18339(2009).
[28] L. Lei, F. Lou, K.Y. Tao, H.X. Huang, X. Cheng, P. Xu. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photonics Res., 7, 734-741(2019).
[29] Z. Liu, G. Liu, X. Liu, Y. Wang, G. Fu. Titanium resonators based ultra-broadband perfect light absorber. Opt. Mater., 83, 118-123(2018).
[30] S. Farsinezhad, T. Shanavas, N. Mahdi, A.M. Askar, P. Kar, H. Sharma, K. Shankar. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances. Nanotechnology, 29, 154006(2018).
[31] K.W. Oh, C.H. Ahn. A new flip-chip bonding technique using micromachined conductive polymer bumps. IEEE Trans. Adv. Packag., 22, 586-591(1999).
[32] F.J. van Soest, H. van Wolferen, H. Hoekstra, R.M. de Ridder, K. Worhoff, P.V. Lambeck. Laser interference lithography with highly accurate interferometric alignment. Jpn. J. Appl. Phys., 44, 6568-6570(2005).
[33] H.-Y. Wang, Z.-H. Wu. Study on the alignment technology process of double-sided lithography on glass substrate. Semicond. Technol. (China), 31, 576-578(2006).
[34] D.W. Lynch, W.R. Hunter. Palik E.D. (ed.), Handbook of Optical Constants of Solids(1997).
[35] G. Duan, J. Schalch, X. Zhao, J. Zhang, R.D. Averitt, X. Zhang. Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies. Opt. Express, 26, 2242-2251(2018).
[36] P. Zhou, G. Zheng, Y. Chen, L. Xu, F. Xian. Dynamically tunable perfect absorption based on the phase transition of vanadium dioxide with aluminum hole arrays. Solid State Commun., 288, 48-52(2019).
[37] Y. Luo, Z. Liang, D. Meng, J. Tao, J. Liang, C. Chen, J. Lai, Y. Qin, J. Lv, Y. Zhang. Ultra-broadband and high absorbance metamaterial absorber in long wavelength infrared based on hybridization of embedded cavity modes. Opt. Commun., 448, 1-9(2019).
[38] H.-T. Chen. Interference theory of metamaterial perfect absorbers. Opt. Express, 20, 7165-7172(2012).
[39] D.W. Oh, C. Ko, S. Ramanathan, D.G. Cahill. Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2. Appl. Phys. Lett., 96, 3(2010).
[40] D. Hou, L.U. Yuan, Z. Liu, H.U.J.M.R. Jie. Temperature rising in VO2 thin films under irradiation of mid-infrared laser based on external heat source. Mater. Rev., 31, 91-95(2017).
[41] C.-W. Cheng, M.N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, Y.-C. Chang. Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt. Express, 20, 10376-10381(2012).
[42] W.Q. Zhao, Y. Li, R. Tian, J.X. Li, L.N. Fan, J.Z. Zhou, J. Liu, X. Zhang, C. Peng, Y.D. Wu, M.D. Zou. A dynamically temperature tunable broadband infrared absorber with cross square nanocolumn arrays. Opt. Commun., 474, 7(2020).
[43] H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, K. Aydin. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films. Sci. Rep., 5, 13384(2015).
[44] T. Moradi, A. Hatef. Thermal tracing of a highly reconfigurable and wideband infrared heat sensor based on vanadium dioxide. J. Appl. Phys., 127, 9(2020).
[45] M.D. Zou, Y. Li, W.Q. Zhao, X. Zhang, Y.D. Wu, C. Peng, L.N. Fan, J.X. Li, J.Y. Yan, J.Q. Zhuang, J.C. Mei, X.P. Wang. Dynamically tunable perfect absorber based on VO2-Au hybrid nanodisc array. Opt. Eng., 60, 11(2021).