Optical frequency comb (OFC) systems[
High Power Laser Science and Engineering, Volume. 8, Issue 2, 02000e17(2020)
Tunable optical frequency comb from a compact and robust Er:fiber laser
We report on a compact and robust self-referenced optical frequency comb with a tunable repetition rate, generated by an all-polarization-maintaining (PM) mode-locked Er-doped fiber laser. The spacing between comb teeth can be tuned above 300 kHz at a repetition rate of 101 MHz. The repetition rate and the carrier–envelope offset of the laser are stabilized separately, and the relative residual phase noises are determined to be
1 Introduction
Optical frequency comb (OFC) systems[
Here, we have developed a compact, movable and robust OFC system with a tunable repetition rate. We combined a homemade all-PM, mode-locked fiber laser[
With an electrically controlled fiber delay line in the laser cavity, the OFC can provide a tunable range of 342 kHz at a repetition rate of 101 MHz, while the laser remains mode-locked with simultaneous phase locking. The stabilized in-loop
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
2 Comb design
The configuration of a tunable compact fiber frequency comb design is shown in Figure
The net intra-cavity dispersion of
The low noise of the optimized fiber oscillator also provided a lower noise level for the following phase locking. To further suppress the technical noise from the environment and make our system robust outside the laboratory, the packaging of optics and the mechanical package design were improved. Different parts of optics were installed in aluminum boxes separately. The main purpose of the separated design was to keep the oscillator independent for possible dismantlement and overhaul in the future. For the same reason, the FC/APC connectors were used between the oscillator and the amplifier while fiber splicing was employed for other connecting points, as shown in Figure
The pulses of the oscillator are separated by a coupler, and the 90% power gets into an all-PM fiber amplifier for boosting pulse energy. Two WDMs, equipped with unidirectional isolators at 1550 nm, are spliced at the two ends of the gain fiber in the amplifier. The gain fiber in the amplifier is
The compressed pulse train with a high peak power is then fiber-coupled to a piece of highly nonlinear germanosilicate fiber[
For the phase locking between the carrier and the envelope, the detected RF signal of
3 Results and discussion
Adopting the modular design, the robust and movable fiber OFC has been demonstrated with many attractive features. The self-starting process has been shown in Visualization 1, and a series of other results pertaining to the long-term behavior of the OFC are measured here, as shown in Figure
The phase noise performance is another important evaluation for the stability of OFCs. The phase noise of the in-loop
4 Conclusions
In conclusion, we have developed a compact and robust OFC system. The all-PM fiber design makes the system movable and practical for applications outside the laboratory. By means of an electrically controlled fiber delay in a laser cavity, the repetition rate of the OFC has a tunable range of 342 kHz at 101 MHz for specific applications, especially benefiting those measurements with tunable repetition rates. Tight phase locking of
[1] T. Udem, R. Holzwarth, T. W. Hänsch. Nature, 416, 233(2002).
[2] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Nat. Photon., 3, 351(2009).
[3] P. Balling, P. Křen, P. Mašika, S. A. Van Den Berg. Opt. Express, 17, 9300(2009).
[4] J. Lee, Y. J. Kim, K. Lee, S. Lee, S. W. Kim. Nat. Photon., 4, 716(2010).
[5] S. A. Diddams, L. Hollberg, V. Mbele. Nature, 445, 627(2007).
[6] B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué. Nat. Photon., 4, 55(2010).
[7] E. Baumann, F. R. Giorgetta, J. D. Deschênes, W. C. Swann, I. Coddington, N. R. Newbury. Opt. Express, 22(2014).
[8] C. Wang, Z. Deng, C. Gu, Y. Liu, D. Luo, Z. Zhu, W. Li, H. Zeng. Opt. Lett., 43, 1606(2018).
[9] T. R. Schibli, K. Minoshima, F. L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann. Opt. Lett., 29, 2467(2004).
[10] B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jorgensen. Opt. Lett., 29, 250(2004).
[11] Y. Kim, S. Kim, Y. J. Kim, H. Hussein, S. W. Kim. Opt. Express, 17(2009).
[12] K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, F. L. Hong. Opt. Express, 20(2012).
[13] Y. Ma, B. Xu, H. Ishii, F. Meng, Y. Nakajima, I. Matsushima, T. R. Schibli, Z. Zhang, K. Minoshima. Opt. Lett., 43, 4136(2018).
[14] I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, M. M. Fejer. Opt. Express, 13, 6490(2005).
[15] H. Inaba, Y. Daimon, F. L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa. Opt. Express, 14, 5223(2006).
[16] L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, N. R. Newbury. Opt. Express, 22, 6996(2014).
[17] J. Lee, K. Lee, Y. S. Jang, H. Jang, S. Han, S. H. Lee, K. I. Kang, C. W. Lim, Y. J. Kim, S. W. Kim. Sci. Rep., 4, 5134(2014).
[18] N. Kuse, C. C. Lee, J. Jiang, C. Mohr, T. R. Schibli, M. E. Fermann. Opt. Express, 23(2015).
[19] L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, I. Coddington. Rev. Sci. Instrum., 86(2015).
[20] Z. Zhu, Y. Liu, W. Zhang, D. Luo, C. Wang, L. Zhou, Z. Deng, W. Li. IEEE. Photon. Technol. Lett., 30, 1139(2018).
[21] L. S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler. IEEE J. Sel. Top. Quantum Electron., 9, 1066(2003).
[22] D. J. Jones, E. O. Potma, J. Cheng, B. Burfeindt, Y. Pang, J. Ye, X. S. Xie. Rev. Sci. Instrum., 73, 2843(2002).
[23] L. S. Ma, Z. Bi, A. Bartels, L. Robersson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams. Science, 303, 1843(2004).
[24] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au. IEEE J. Sel. Top. Quantum Electron., 2, 435(1996).
[25] L. F. Mollenauer, R. H. Stolen. Opt. Lett., 9, 13(1984).
[26] A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich, D. Kracht. Opt. Express, 13, 6305(2005).
[27] M. Hirano, T. Nakanishi, T. Okuno, M. Onishi. IEEE J. Sel. Top. Quantum Electron., 15, 103(2009).
[28] G. Wang, F. Meng, C. Li, T. Jiang, A. Wang, Z. Fang, Z. Zhang. Opt. Lett., 39, 2534(2014).
[29] C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, T. R. Schibli. Opt. Lett., 37, 3084(2012).
[30] M. Hoffmann, S. Schilt, T. Südmeyer. Opt. Express, 21(2013).
[31] N. Bucalovic, V. Dolgovskiy, C. Schori, P. Thomann, G. Di Domenico, S. Schilt. Appl. Opt., 51, 4582(2012).
Get Citation
Copy Citation Text
Zhiwei Zhu, Yang Liu, Daping Luo, Chenglin Gu, Lian Zhou, Gehui Xie, Zejiang Deng, Wenxue Li. Tunable optical frequency comb from a compact and robust Er:fiber laser[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e17
Category: Research Articles
Received: Dec. 17, 2019
Accepted: Mar. 31, 2020
Posted: Apr. 2, 2020
Published Online: May. 9, 2020
The Author Email: