Bilayer graphene (BLG) is a kind of graphene composed of two coupled honeycomb-like carbon layers[
Chinese Optics Letters, Volume. 20, Issue 9, 093701(2022)
Role of the interlayer interactions in ultrafast terahertz thermal dynamics of bilayer graphene
Bilayer graphene, which is highly promising for electronic and optoelectronic applications because of its strong coupling of the Dirac–Fermions, has been studied extensively for the emergent correlated phenomena with magic-angle manipulation. Due to the low energy linear type band gap dispersion relationship, graphene has drawn an amount of optoelectronic devices applications in the terahertz region. However, the strong interlayer interactions modulated electron-electron and electron-phonon coupling, and their dynamics in bilayer graphene have been rarely studied by terahertz spectroscopy. In this study, the interlayer interaction influence on the electron-electron and the electron-phonon coupling has been assigned with the interaction between the two graphene layers. In the ultrafast cooling process in bilayer graphene, the interlayer interaction could boost the electron-phonon coupling process and oppositely reduce the electron-electron coupling process, which led to the less efficient thermalization process. Furthermore, the electron-electron coupling process is shown to be related with the electron momentum scattering time, which increased vividly in bilayer graphene. Our work could provide new insights into the ultrafast dynamics in bilayer graphene, which is of crucial importance for designing multi-layer graphene-based optoelectronic devices.
1. Introduction
Bilayer graphene (BLG) is a kind of graphene composed of two coupled honeycomb-like carbon layers[
In the case of doped monolayer graphene (MLG), the ultrafast THz photoconductivity is reduced by the intraband carrier-carrier thermalization near the Fermi energy, which is different from the interband transition origin compared with the optical pump optical probe and angle-resolved photoelectron spectroscopy (ARPES)[
2. Experimental Setup
The VIPTP is driven by a 1 kHz Ti:sapphire regenerative amplifier with 800 nm central wavelength and 35 fs pulse duration and then through an optical parameter amplifier to change the center wavelength to 190–2600 nm with the beam size of . The THz pulses are generated by optical rectification and detected by electro-optic sampling in a pair of 1 mm thick, (110)-oriented ZnTe crystals. The MLG and BLG were grown on a substrate by chemical vapor deposition (CVD), respectively. As shown in Fig. S1 of
Sign up for Chinese Optics Letters TOC Get the latest issue of Advanced Photonics delivered right to you!Sign up now
Figure 1.(a) Schematic diagram of MLG on SiO2 substrate; (b) schematic diagram of BLG film on SiO2 substrate; (c) Raman spectra of MLG and BLG.
3. Results and Discussion
The pump-induced photoconductivity () is probed by a THz pulse by monitoring the change in the transmitted electrical field () following the optical pump as a function of pump-probe delay. The measurement is based on the principle that is proportional to [
Figure 2.(a) Photoinduced THz conductivity of MLG and BLG as a function of the rising time at 1.91 eV, 160 µJ/cm2; (b) photoinduced THz conductivity of MLG and BLG as a function of the delay time at 1.91 eV, 160 µJ/cm2.
In order to disentangle the e-p and optical phonon-acoustic phonon interaction effect between the graphene layers, the mono-exponential fitting is presented in Fig. 3[
Figure 3.(a)–(c) Relaxation process of MLG (black) and BLG (red) as a function of pump fluence at different photon energies; (d) relaxation process of MLG (black) and BLG (red) as a function of photon energy at the same pump fluence.
For the primary concern, the negative THz onductivity arises from the carrier-carrier thermalization process, which reduced the conductivity of the carriers near the Fermi surface; therefore, the measurement of the thermalization efficiency could represent the carrier-carrier Coulomb interaction strength in MLG and BLG[
|
Figure 4.(a)–(c) Optical-induced THz conductivity peak value |Δσ| of MLG (black) and BLG (red) under different photon energies as a function of pump fluence; (d) ultrafast hot carrier cooling process of MLG and ultrafast heating and hot carrier cooling process of BLG. Diagrams of ultrafast processes and relaxation dynamics involving optical pumping (straight arrows), electron scattering (curled arrows), and optical phonon scattering (vertical blue wiggled arrows). Filled (open) circles signify electrons (holes). (e) Schematic diagram of the ultrafast dynamics in graphene after photoexcitation.
The degree of deviation of the thermalizing sub-linearity of the hot electron in ideal MLG is predicted to be 0.5 due to the electron capacity C being in direct proportion to the electron temperature T[
Despite the e-p coupling, the strong layer interaction affected layer electron momentum scattering time should be investigated. We measured the 2D photoconductivity of two samples at the pump-probe delay time of 0 and 2 ps, respectively, as shown in Figs. 5(a)–5(d). To understand the conductivity dispersion relation for different samples, we fit the experimental conductivity by the Drude model, which is often employed for the transport of charge carriers in graphene[
Figure 5.(a), (b) Extracted frequency dependence of the THz conductivity at delay times of 0 ps and 2 ps for MLG, solid lines show the fit of the complex conductivity to a Drude model; (c), (d) extracted frequency dependence of the THz conductivity at delay times of 0 ps and 2 ps for BLG, solid lines show the fit of the complex conductivity to a Drude model.
4. Conclusions
In conclusion, the time-resolved THz conductivity dynamics of MLG and BLG have been studied by optical pump THz probe spectroscopy with different photon energies and fluences. By analyzing the thermal and cooling dynamics of the optical-induced negative THz conductivity, we find that the interlayer strong coupling process plays different roles in the ultrafast thermal and relaxation process of THz conductivity. In addition, the interlayer interaction of BLG could accelerate the hot carrier cooling process by means of the phonon-phonon coupling process due to the A-B stacking clusters in the illumination zone of BLG, and the carrier-carrier scattering time of the Dirac–Fermion reduction could be assigned to the band structure modulation induced by the A-A stacking interlayer tunneling process. Finally, the different carrier scattering times changed with the pump delay in both the MLG and BLG are obtained by utilizing the Drude model, and the momentum scattering time in BLG is much larger than that in MLG, indicating that the band structure was modulated by the layer-layer interaction. Our work will provide new insights for the application of ultrafast nonequilibrium heating and cooling pathways, and the improvement of multi-layer graphene-based nano optoelectronic devices[
[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81, 109(2009).
[2] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, P. Jarillo-Herrero. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80(2018).
[3] J. Gonzalez, T. Stauber. Kohn-Luttinger superconductivity in twisted bilayer graphene. Phys. Rev. Lett., 122, 026801(2019).
[4] I. Das, X. Lu, J. Herzog-Arbeitman, Z.-D. Song, K. Watanabe, T. Taniguchi, B. A. Bernevig, D. K. Efetov. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys., 17, 710(2021).
[5] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 590, 249(2021).
[6] J. Wu, Y. Zheng, Z. Zeng, R. Li. High-order harmonic generation from zigzag graphene nanoribbons. Chin. Opt. Lett., 18, 103201(2020).
[7] S. Kar, V. L. Nguyen, D. R. Mohapatra, Y. H. Lee, A. K. Sood. Ultrafast spectral photoresponse of bilayer graphene: optical pump-terahertz probe spectroscopy. ACS Nano, 12, 1785(2018).
[8] K. Ni, J. Du, J. Yang, S. Xu, X. Cong, N. Shu, K. Zhang, A. Wang, F. Wang, L. Ge, J. Zhao, Y. Qu, K. S. Novoselov, P. Tan, F. Su, Y. Zhu. Stronger interlayer interactions contribute to faster hot carrier cooling of bilayer graphene under pressure. Phys. Rev. Lett., 126, 027402(2021).
[9] Z. Zhang, T. Lin, X. Xing, X. Lin, X. Meng, Z. Cheng, Z. Jin, G. Ma. Photoexcited terahertz conductivity dynamics of graphene tuned by oxygen-adsorption. Appl. Phys. Lett., 110, 111108(2017).
[10] S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. King, P. Hofmann. Ultrafast dynamics of massive Dirac Fermions in bilayer graphene. Phys. Rev. Lett., 112, 257401(2014).
[11] M. T. Mihnev, J. R. Tolsma, C. J. Divin, D. Sun, R. Asgari, M. Polini, C. Berger, W. A. de Heer, A. H. MacDonald, T. B. Norris. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene. Nat. Commun., 6, 8105(2015).
[12] J. Huang, T. Fu, H. Li, Z. Shou, X. Gao. A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface. Chin. Opt. Lett., 18, 013102(2020).
[13] S. Carr, D. Massatt, S. Fang, P. Cazeaux, M. Luskin, E. Kaxiras. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B, 95, 075420(2017).
[14] J. Wu, H. Xu, J. Zhang. Raman spectroscopy of graphene. Acta Chim. Sin., 72, 301(2014).
[15] Z. Tao, J. Du, Z. Qi, K. Ni, S. Jiang, Y. Zhu. Raman spectroscopy study of sp2 to sp3 transition in bilayer graphene under high pressures. Appl. Phys. Lett., 116, 133101(2020).
[16] D. Sun, C. Divin, C. Berger, W. A. de Heer, P. N. First, T. B. Norris. Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene. Phys. Rev. Lett., 104, 136802(2010).
[17] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol., 3, 210(2008).
[18] K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, F. H. L. Koppens. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys., 9, 248(2013).
[19] T. Jia, W. Zhang, Z. Zhang, Z. Zhan, G. Ma, J. Du, Y. Leng. Role of the optical–acoustic phonon interaction in the ultrafast cooling process of CVD graphene. J. Phys. Chem. C, 125, 27283(2021).
[20] E. A. A. Pogna, X. Jia, A. Principi, A. Block, L. Banszerus, J. Zhang, X. Liu, T. Sohier, S. Forti, K. Soundarapandian, B. Terrés, J. D. Mehew, C. Trovatello, C. Coletti, F. H. L. Koppens, M. Bonn, H. I. Wang, N. van Hulst, M. J. Verstraete, H. Peng, Z. Liu, C. Stampfer, G. Cerullo, K.-J. Tielrooij. Hot-carrier cooling in high-quality graphene is intrinsically limited by optical phonons. ACS Nano, 15, 11285(2021).
[21] Z. Zhang, M. Hu, T. Jia, J. Du, C. Chen, C. Wang, Z. Liu, T. Shi, J. Tang, Y. Leng. Suppressing the trapping process by interfacial charge extraction in antimony selenide heterojunctions. ACS Energy Lett., 6, 1740(2021).
[22] P. H. Tan, W. P. Han, W. J. Zhao, Z. H. Wu, K. Chang, H. Wang, Y. F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A. C. Ferrari. The shear mode of multilayer graphene. Nat. Mater., 11, 294(2012).
[23] H. A. Hafez, S. Kovalev, K. J. Tielrooij, M. Bonn, M. Gensch, D. Turchinovich. Terahertz nonlinear optics of graphene: from saturable absorption to high-harmonics generation. Adv. Opt. Mater., 8, 1900771(2019).
[24] M. W. Graham, S.-F. Shi, D. C. Ralph, J. Park, P. L. McEuen. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys., 9, 103(2012).
[25] G. Jnawali, Y. Rao, H. Yan, T. F. Heinz. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett., 13, 524(2013).
[26] K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, F. H. Koppens. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol., 10, 437(2015).
[27] A. Tomadin, S. M. Hornett, H. I. Wang, E. M. Alexeev, A. Candini, C. Coletti, D. Turchinovich, M. Klaui, M. Bonn, F. H. L. Koppens, E. Hendry, M. Polini, K. J. Tielrooij. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Sci. Adv., 4, eaar5313(2018).
[28] D. Sun, C. Divin, M. Mihnev, T. Winzer, E. Malic, A. Knorr, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, T. B. Norris. Current relaxation due to hot carrier scattering in graphene. New J. Phys., 14, 105012(2012).
[29] M. Mittendorff, T. Winzer, E. Malic, A. Knorr, C. Berger, W. A. de Heer, H. Schneider, M. Helm, S. Winnerl. Anisotropy of excitation and relaxation of photogenerated charge carriers in graphene. Nano Lett., 14, 1504(2014).
[30] B. L. Huang, C. P. Chuu, M. F. Lin. Asymmetry-enriched electronic and optical properties of bilayer graphene. Sci. Rep., 9, 859(2019).
[31] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, D. N. Basov. Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys. Rev. Lett., 102, 037403(2009).
[32] W. Aroua. Metallic nanoparticles/graphene-molecules hybrid system-based active biosensor. Chin. Opt. Lett., 19, 123603(2021).
Get Citation
Copy Citation Text
Tingyuan Jia, Shaoming Xie, Zeyu Zhang, Qinxue Yin, Chunwei Wang, Chenjing Quan, Xiao Xing, Juan Du, Yuxin Leng, "Role of the interlayer interactions in ultrafast terahertz thermal dynamics of bilayer graphene," Chin. Opt. Lett. 20, 093701 (2022)
Category: Infrared and Terahertz Photonics
Received: Feb. 9, 2022
Accepted: May. 13, 2022
Posted: May. 13, 2022
Published Online: Jun. 16, 2022
The Author Email: Zeyu Zhang (zhangzeyu@ucas.ac.cn), Juan Du (dujuan@siom.ac.cn), Yuxin Leng (lengyuxin@siom.ac.cn)