Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0901004(2024)

Ocean-Land Waveform Classification Based on Multichannel Weighted Voting of Airborne Green Laser

Xinglei Zhao1、*, Gang Liang1, Jianhu Zhao2, and Fengnian Zhou3
Author Affiliations
  • 1College of Information Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
  • 2School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, Hubei, China
  • 3The Survey Bureau of Hydrology and Water Resources of Yangtze Estuary, Shanghai 200136, China
  • show less

    In order to improve the accuracy of ocean-land waveform classifications of airborne green lasers in complex ocean-land environments, an ocean-land waveform classification method based on multichannel weighted voting [i.e., multichannel weighted voting convolutional neural network (MWV-CNN)] is proposed. First, the multichannel green laser waveforms collected in the deep and shallow channels are input into the proposed one-dimensional convolutional neural network (1D CNN) module through a multichannel input module. Second, each 1D CNN module processes each channel waveform separately to obtain the predicted scores for each channel waveform belonging to the ocean and land categories. Finally, the predicted score of each channel is treated as weight, and a multichannel fusion module is used to determine the final waveform category via weighted voting. The measured data in the coastal waters of Lianyungang, China are verified by experiment using Optech CZMIL. The results indicate that the overall classification accuracy, Kappa coefficient, and overall accuracy standard deviation of MWV-CNN are 99.45%, 0.982, and 0.02%, respectively, and as compared with traditional ocean-land waveform classification methods, the proposed method exhibits better classification accuracy and robustness, thus providing a new effective way for realizing ocean-land waveform classification of airborne green laser with high accuracy.

    Keywords
    Tools

    Get Citation

    Copy Citation Text

    Xinglei Zhao, Gang Liang, Jianhu Zhao, Fengnian Zhou. Ocean-Land Waveform Classification Based on Multichannel Weighted Voting of Airborne Green Laser[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0901004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Dec. 5, 2022

    Accepted: Dec. 23, 2022

    Published Online: May. 6, 2024

    The Author Email: Xinglei Zhao (xingleizhao@126.com)

    DOI:10.3788/LOP223239

    CSTR:32186.14.LOP223239

    Topics