The interaction of relativistically intense laser pulses with solid targets has stimulated considerable interest because of its practical applications in laser-driven particle acceleration[
High Power Laser Science and Engineering, Volume. 8, Issue 2, 02000e16(2020)
Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target
Experimental and simulation data [Moreau et al., Plasma Phys. Control. Fusion
1 Introduction
The interaction of relativistically intense laser pulses with solid targets has stimulated considerable interest because of its practical applications in laser-driven particle acceleration[
In this paper, we consider an ultra-intense laser pulse normally irradiating on a fully ionized nanolayered target. The schematic diagram of the electron density for the nanolayered target (partial) is shown in Figure
2 Generation mechanism of the magnetic field
If the laser spot size is large enough, we can simply assume that an equally infinite and uniform fast electron beam with electron density
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
To further understand the characteristics of the self-generated magnetic fields, we take a part of the nanolayered target as an example to analyze the generation of the magnetic field when the laser pulse interacts with the nanolayered target. As shown in Figure
If we simply assume that the absorbed laser energy flux is approximately equal to the electron energy flux
Substituting Equation (
3 Numerical simulation
In the following, the generation of magnetic fields is studied in further detail by the two-dimensional (2D) particle-in-cell (PIC) simulations, which are performed using the simulation code EPOCH[
During the interaction of the laser pulse with the nanolayered target, most of the laser energy is absorbed by the nanolayered target. And a large number of energetic electrons can be accelerated by the laser pulse. The simulation results indicate that the peak of the laser energy absorption can reach as high as
Figure
In the theoretical analysis, the current density of the fast electron beam could affect the intensity of the self-generated magnetic field. So, we can change the intensity of the laser pulse to affect the current density of the fast electron beam and thus the intensity of the self-generated magnetic field. In Figure
4 Summary
In summary, we have established accurate results for the generation of magnetic fields in a laser irradiated nanolayered target based on the EMHD approximation. The resultant structure and amplitude of the magnetic field inside the nanolayered target are determined for a given laser intensity and plasma density. It reveals that the characteristics of the self-generated magnetic field are strongly dependent on the density gradient of the nanostructured arrays and the fast electron current. The 2D-PIC simulation results are in good agreement with the theoretical analysis. When designing the relevant experiments of the interaction of ultra-intense laser pulse with a nanowire target, our work can better predict the structure and the intensity of the self-generated magnetic field inside the nanowire target, which is beneficial to improving the quality of the energetic electrons and ions accelerated by the laser pulse in the nanowire target.
[1] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka. Nature, 444, 737(2006).
[2] A. Macchi, M. Borghesi, M. Passoni. Rev. Mod. Phys., 85, 751(2013).
[3] F. Wagner, C. Brabetz, O. Deppert, M. Roth, T. Stohlker, An. Tauschwitz, A. Tebartz, B. Zielbauer, V. Bagnoud. High Power Laser Sci. Eng., 4, e45(2016).
[4] S. Kawata, T. Nagashima, M. Takano, T. Izumiyama, D. Kamiyama, D. Barada, Q. Kong, Y. J. Gu, P. X. Wang, Y. Y. Ma, W. M. Wang, W. Zhang, J. Xie, H. R. Zhang, D. B. Dai. High Power Laser Sci. Eng., 2, e4(2014).
[5] J. Schreiber, F. Bell, Z. Najmudin. High Power Laser Sci. Eng., 2, e41(2014).
[6] D. Khaghani, M. Lobet, B. Borm, L. Burr, F. Gartner, L. Gremillet, L. Movsesyan, O. Rosmej, M. E. Toimil-Molares, F. Wagner, P. Neumayer. Sci. Rep., 7, 11366(2017).
[7] M. Dozires, G. M. Petrov, P. Forestier-Colleoni, P. Campbell, K. Krushelnick, A. Maksimchuk, C. McGuffey, V. Kaymak, A. Pukhov, M. G. Capeluto, R. Hollinger, V. N. Shlyaptsev, J. J. Rocca, F. N. Beg. Plasma Phys. Control. Fusion, 61(2019).
[8] A. Rousse, C. Rischel, J.-C. Gauthier. Rev. Mod. Phys., 73, 17(2001).
[9] A. Pukhov. Nat. Phys., 2, 439(2006).
[10] L. M. Chen, F. Liu, W. M. Wang, M. Kando, J. Y. Mao, L. Zhang, J. L. Ma, Y. T. Li, S. V. Bulanov, T. Tajima, Y. Kato, Z. M. Sheng, Z. Y. Wei, J. Zhang. Phys. Rev. Lett., 104(2010).
[11] E. Brambrink, S. Baton, M. Koenig, R. Yurchak, N. Bidaut, B. Albertazzi, J. E. Cross, G. Gregori, A. Rigby, E. Falize, A. Pelka, F. Kroll, S. Pikuz, Y. Sakawa, N. Ozaki, C. Kuranz, M. Manuel, C. Li, P. Tzeferacos, D. Lamb. High Power Laser Sci. Eng., 4, e30(2016).
[12] V. Malka, S. Fritzler, E. Lefebvre, E. dHumieres, R. Ferrand, G. Grillon, C. Albaret, S. Meyroneinc, J.-P. Chambaret, A. Antonetti, D. Hulin. Med. Phys., 31, 1587(2004).
[13] D. Schardt. Nucl. Phys. A, 787, 633(2007).
[14] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, R. J. Mason. Phys. Plasmas, 1, 1626(1994).
[15] A. Moreau, R. Hollinger, C. Calvi, S. Wang, Y. Wang, M. G. Capeluto, A. Rockwood, A. Curtis, S. Kasdorf, V. N. Shlyaptsev, V. Kaymak, A. Pukhov, J. J. Rocca. Plasma Phys. Control. Fusion, 62(2020).
[16] D. Sarkar, P. K. Singh, G. Cristoforetti, A. Adak, G. Chatterjee, M. Shaikh, A. D. Lad, P. Londrillo. Appl. Phys. Lett. Photonics, 2(2017).
[17] A. Curtis, C. Calvi, J. Tinsley, R. Hollinger, V. Kaymak, A. Pukhov, S. J. Wang, A. Rockwood, Y. Wang, V. N. Shlyaptsev, J. J. Rocca. Nat. Commun., 9, 1077(2018).
[18] M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B. M. Luther, L. Yin, S. Wang, J. J. Rocca. Nat. Photonics, 7, 796(2013).
[19] Z. Q. Zhao, L. H. Cao, L. F. Cao, J. Wang, W. Z. Huang, W. Jiang, Y. L. He, Y. C. Wu, B. Zhu, K. G. Dong, Y. K. Ding, B. H. Zhang, Y. Q. Gu, M. Y. Yu, X. T. He. Phys. Plasmas, 17(2010).
[20] V. Kaymak, A. Pukhov, V. N. Shlyaptsev, J. J. Rocca. Phys. Rev. Lett., 117(2016).
[21] L. H. Cao, Y. Q. Gu, Z. Q. Zhao, L. F. Cao, W. Z. Huang, W. M. Zhou, H. B. Cai, X. T. He, W. Yu, M. Y. Yu. Phys. Plasmas, 17(2010).
[22] L. H. Cao, Y. Q. Gu, Z. Q. Zhao, L. F. Cao, W. Z. Huang, W. M. Zhou, X. T. He, W. Yu, M. Y. Yu. Phys. Plasmas, 17(2010).
[23] J. Q. Yu, W. M. Zhou, L. H. Cao, Z. Q. Zhao, L. F. Cao, L. Q. Shan, D. X. Liu, X. L. J, B. Li, Y. Q. Gu. Appl. Phys. Lett., 100(2012).
[24] L. L. Ji, S. Jiang, A. Pukhov, R. Freeman, K. Akli. High Power Laser Sci. Eng., 5(2017).
[25] S. Jiang, L. L. Ji, H. Audesirk, K. M. George, J. Snyder, A. Krygier, P. Poole, C. Willis, R. Daskalova, E. Chowdhury, N. S. Lewis, D.W. Schumacher, A. Pukhov, R. R. Freeman, K. U. Akli. Phys. Rev. Lett., 116(2016).
[26] P. K. Singh, G. Chatterjee, A. D. Lad, A. Adak, S. Ahmed, M. Khorasaninejad, M. M. Adachi, K. S. Karim, S. S. Saini, A. K. Sood, G. Ravindra Kumar. Appl. Phys. Lett., 100(2012).
[27] G. Chatterjee, P. K. Singh, S. Ahmed, A. P. L. Robinson, A. D. Lad, S. Mondal, V. Narayanan, I. Srivastava, N. Koratkar, J. Pasley, A. K. Sood, G. R. Kumar. Phys. Rev. Lett., 108(2012).
[28] E. A. Startsev, R. C. Davidson, M. Dorf. Phys. Plasmas, 16(2009).
[29] H. B. Cai, S. P. Zhu, M. Chen, S. Z. Wu, X. T. He, K. Mima. Phys. Rev. E, 83(2011).
[30] A. R. Bell, J. R. Davies, S. M. Guerin. Phys. Rev. E, 58, 2471(1998).
[31] W. S. Zhang, H. B. Cai, S. P. Zhu. Phys. Plasmas, 22(2015).
[32] A. B. Bell, A. P. L. Robinson, M. Sherlock, R. J. Kingham, W. Rozmus. Plasma Phys. Control. Fusion, 48(2006).
[33] F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hamme, P. Lee, P. A. Norreys, M. Tatarakis. Phys. Plasmas, 4, 447(1997).
[34] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, C. P. Ridgers. Plasma Phys. Control. Fusion, 57(2015).
Get Citation
Copy Citation Text
J. M. Tian, H. B. Cai, W. S. Zhang, E. H. Zhang, B. Du, S. P. Zhu. Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e16
Category: Research Articles
Received: Dec. 17, 2019
Accepted: Mar. 26, 2020
Posted: Mar. 27, 2020
Published Online: May. 8, 2020
The Author Email: