Chinese Optics, Volume. 15, Issue 5, 1079(2022)

Flexural mounting technology of a 1.8 m space-borne rectangular mirror

Zong-xuan LI1,3、*, Chang-hao ZHANG1,2,3, De-fu ZHANG1,3, Bin MA1,2,3, and Yun-feng LI1,2,3
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Space-Based Dynamic Fast Optical Imaging Technology, Chinese Academy of Sciences, Changchun 130033, China
  • show less

    The rectangular primary mirror with aperture of 1.8 m×0.5 m is the crucial component of an off-axis Three Mirror Anastigmat (TMA) space optical system. In order to guaranty the structural stability and reliability of the Primary Mirror Assembly (PMA) and the surface figure error (RMS value) of the mirror, a bi-axial flexural support has been proposed for the large-size rectangular mirror. First, based on the principle of kinematic equivalent, the initial structure of the bi-axial flexural support was designed and the analytical formula for stiffness and its characteristic was studied as well. Then the mounting position and the key dimensions of the flexural supports were studied and optimized. Finally, the final optimization design scheme of the PMA was determined. Experimental results indicate that the surface figure error (RMS value) of the PMA under 1 G gravity in X and Y directions are 4.81 nm and 6.09 nm respectively when the optical axis is placed horizontally, which are less than λ/50 (λ=632.8 nm). The first-order natural frequency is 104 Hz, which can satisfy the design requirements. The dynamic tests have shown that the dynamic characteristics of the mirror assembly are good, and the flexural support system is stable and reliable. Now the mirror has been polished to have a surface figure better than λ/30 RMS. Zero Gravity optical testing has been performed under ±1 G respectively, which shows good coincidence with the analytical results.

    Tools

    Get Citation

    Copy Citation Text

    Zong-xuan LI, Chang-hao ZHANG, De-fu ZHANG, Bin MA, Yun-feng LI. Flexural mounting technology of a 1.8 m space-borne rectangular mirror[J]. Chinese Optics, 2022, 15(5): 1079

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Jun. 13, 2022

    Accepted: --

    Published Online: Sep. 29, 2022

    The Author Email:

    DOI:10.37188/CO.2022-0131

    Topics