[2] WOODS-ROBINSON R, HAN Y B, ZHANG H Y et al. Wide band gap chalcogenide semiconductors[J]. Chemical Reviews, 4007(2020).
[3] ZHANG C, NICOLOSI V. Graphene and MXene-based transparent conductive electrodes and supercapacitors[J]. Energy Storage Materials, 102(2019).
[5] LIU H, LI H, TAO J et al. Single crystalline transparent conducting F, Al, and Ga Co-doped ZnO thin films with high photoelectrical performance[J]. ACS Applied Materials & Interfaces, 22195(2023).
[6] YUTAKA F, TARO H, YUKIO Y et al. A transparent metal: Nb-doped anatase TiO2[J]. Applied Physics Letters, 252101(2005).
[7] WILLIS J, SCANLON D. Latest directions in p-type transparent conductor design[J]. Journal of Materials Chemistry C, 11995(2021).
[8] YANG C, KNEISS M, SCHEIN F L et al. Room-temperature domain-epitaxy of copper iodide thin films for transparent CuI/ZnO heterojunctions with high rectification ratios larger than 109[J]. Scientific Reports, 21937(2016).
[10] YANG C, MAX K, MICHAEL L et al. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit[J]. Applied Physical Sciences, 12929(2016).
[11] MARIUS G, FRIEDRICH S, MICHAEL L et al. Cuprous iodide-a p-type transparent semiconductor: history and novel applications[J]. Physica Status Solidi A, 1671(2013).
[12] TANAKA T, KEISHI K, MASATAKA H. Transparent, conductive CuI films prepared by rf-dc coupled magnetron sputtering[J]. Thin Solid Films, 179(1996).
[13] KIM D, NAKAYAM M, KOJIM O et al. Thermal-strain-induced splitting of heavy and light-hole exciton energies in CuI thin films grown by vacuum evaporation[J]. Physical Review B, 13879(1999).
[14] ZI M, LI J, ZHANG Z et al. Effect of deposition temperature on transparent conductive properties of γ-CuI film prepared by vacuum thermal evaporation[J]. Phys. Status Solidi, 1466(2015).
[15] KANG H, LIU R, CHEN K et al. Electrodeposition and optical properties of highly oriented γ-CuI thin films[J]. Electrochim Acta, 8121(2010).
[16] YAMADA N, KONDO Y, INO R. Low-temperature fabrication and performance of polycrystalline CuI films as transparent p-type semiconductors[J]. Physica Status Solidi, 1700782(2019).
[17] STORM P, BAR M, BENNDORF G et al. High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition[J]. APL Materials, 091115(2020).
[18] YANG C, ROSE E, YU W et al. Controllable growth of copper iodide for high-mobility thin films and self-assembled microcrystals[J]. ACS Applied Electronic Materials, 3627(2020).
[19] GENG F, WU Y, SPLITH D et al. Amorphous transparent Cu(S,I) thin films with very high hole conductivity[J]. Journal of Physical Chemistry Letters, 6163(2023).
[20] GENG F, WANG L, STRALKA T et al. (111)-oriented growth and acceptor doping of transparent conductive CuI:S thin films by spin coating and radio frequency-sputtering[J]. Advanced Engineering Materials, 2201666(2023).
[22] CHA J, JUNG D. Air-stable transparent silver iodide-copper iodide heterojunction diode[J]. ACS Applied Materials Interfaces, 43807(2017).
[23] NAOOMI Y, YUUMI K, XIANG C et al. Visible-blind wide-dynamic-range fast-response self-powered ultraviolet photodetector based on CuI/In-Ga-Zn-O heterojunction[J]. Applied Materials Today, 153(2019).
[24] AKSHAI S, NANDAKUMAR A, RAMESH R et al. Self-powered UV photodetectors based on heterojunctions composed of ZnO nanorods coated with thin films of ZnS and CuI[J]. ACS Applied Nano Materials, 8529(2023).
[25] ZHANG Y, LI S, YANG W et al. Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector[J]. Journal of Physical Chemistry Letters, 2400(2019).
[26] WANG Y, CHUANG C. Solution processed CuI/n-Si junction device annealed with and without iodine steam for ultraviolet photodetector applications[J]. Journal of Materials Science, 18622(2018).
[27] LI W, SHI W. Growth habit and habit variation of γ-CuI crystallites under hydrothermal conditions[J]. Crystal Research & Technology, 1041(2002).
[28] ALIVOV Y, ÖZGÜR Ü, DOĞAN S et al. Photoresponse of n-ZnO/p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 241108(2005).
[29] LEE M, SEO S, KIM D et al. A low-temperature grown oxide diode as a new switch element for high-density, nonvolatile memories[J]. Advanced Materials, 73(2007).
[30] BRÖTZMANN M, VETTER U, HOFSÄSS H. BN/ZnO heterojunction diodes with apparently giant ideality factors[J]. Journal of Applied Physics, 063704(2009).
[31] SCHENK A, KRUMBEIN U. Coupled defect level recombination: theory and application to anomalous diode characteristics[J]. Journal of Applied Physics, 3185(1995).
[32] YASUHISA O, YOSHIAKI M, SHINGO S et al. Revisiting the role of trap-assisted-tunneling process on current-voltage characteristics in tunnel field-effect transistors[J]. Journal of Applied Physics, 161549(2018).
[33] TALIN A, ALEC, LEONARD F, SWART B et al. Unusually strong space-charge-limited current in thin wires[J]. Physical Review Letters, 076802(2008).
[34] YU W, BENNDORF G, JIANG Y et al. Control of optical absorption and emission of sputtered copper iodide thin films[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2000431(2020).
[36] LUO F, ZHOU H, LIU Y et al. High-performance self-driven SnSe/Si heterojunction photovoltaic photodetector[J]. Chemosensors, 406(2023).
[37] MUKHERJEE S, MAITI R, KATIYAR A et al. Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices[J]. Scientific Reports, 29016(2016).
[38] AN X, LIU F, JUNG Y et al. Tunable graphenesilicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 909(2013).
[39] LIM S, UM D, HA M et al. Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes[J]. Nano Research, 22(2017).
[40] SAHATIYA P, REDDY C, BADHULIKA S. Discretely distributed 1D V2O5 nanowires over 2D MoS2 nanoflakes for an enhanced broadband flexible photodetector covering the ultraviolet to near infrared region[J]. Journal of Materials Chemistry C, 12728(2017).
[41] YIN W, YANG J, ZHAO K et al. High responsivity and external quantum efficiency photodetectors based on solution-processed Ni-doped CuO films[J]. ACS Applied Materials & Interfaces, 11797(2020).
[42] HONG Q, CAO Y, HU J et al. Self-powered ultrafast broadband photodetector based on p-n heterojunctions of CuO/Si nanowire array[J]. ACS Applied Materials & Interfaces, 20887(2014).
[43] SONG Z, LIU Y, WANG Q et al. Self-powered photodetectors based on a ZnTe-TeO2 composite/Si heterojunction with ultra- broadband and high responsivity[J]. Journal of Materials Science, 7562(2018).